Wellcome to Maximimi's library,

  You can find here all papers liked or uploaded by Maximimi
  together with brief user bio and description of her/his academic activity.


[Link to my homepage](https://sites.google.com/view/danisch/home) ## I will read the following papers. - [PageRank as a Function of the Damping Factor](https://papers-gamma.link/paper/106) - [Graph Stream Algorithms: A Survey](https://papers-gamma.link/paper/102) - [Network Sampling: From Static to Streaming Graphs](https://papers-gamma.link/paper/122) - [The Protein-Folding Problem, 50 Years On](https://papers-gamma.link/paper/78) - [Computational inference of gene regulatory networks: Approaches, limitations and opportunitie](https://papers-gamma.link/paper/77) - [Graph complexity analysis identifies an ETV5 tumor-specific network in human and murine low-grade glioma](https://papers-gamma.link/paper/79) - [Gene Networks in Plant Biology: Approaches in Reconstruction and Analysis](https://papers-gamma.link/paper/76) - [The non-convex Burer–Monteiro approach works on smooth semidefinite programs](https://papers-gamma.link/paper/80) - [Solving SDPs for synchronization and MaxCut problems via the Grothendieck inequality](https://papers-gamma.link/paper/81) - [Influence maximization in complex networks through optimal percolation](https://papers-gamma.link/paper/70) - [Motifs in Temporal Networks](https://papers-gamma.link/paper/61) - [Deep Sparse Rectifier Neural Networks](https://papers-gamma.link/paper/69) - [Sparse Convolutional Neural Networks](https://papers-gamma.link/paper/67) - [A fast and simple algorithm for training neural probabilistic language models](https://papers-gamma.link/paper/58) - [Adding One Neuron Can Eliminate All Bad Local Minima](https://papers-gamma.link/paper/71) ## I read the following papers. ### 2018-2019: - [Hierarchical Taxonomy Aware Network Embedding](https://papers-gamma.link/paper/116) - [Billion-scale Network Embedding with Iterative Random Projection](https://papers-gamma.link/paper/110) - [HARP: Hierarchical Representation Learning for Networks](https://papers-gamma.link/paper/109/) - [Layered Label Propagation: A MultiResolution Coordinate-Free Ordering for Compressing Social Networks](https://papers-gamma.link/paper/105) ### 2017-2018: - [Link Prediction in Graph Streams](https://papers-gamma.link/paper/101) - [The Community-search Problem and How to Plan a Successful Cocktail Party](https://papers-gamma.link/paper/74) - [A Nonlinear Programming Algorithm for Solving Semidefinite Programs via Low-rank Factorization](https://papers-gamma.link/paper/55) - [Deep Learning](https://papers-gamma.link/paper/68) - [Reducing the Dimensionality of Data with Neural Networks](https://papers-gamma.link/paper/65) - [Representation Learning on Graphs: Methods and Applications](https://papers-gamma.link/paper/60) - [Improved Approximation Algorithms for MAX k-CUT and MAX BISECTION](https://papers-gamma.link/paper/56) - [Cauchy Graph Embedding](https://papers-gamma.link/paper/53) - [Phase Transitions in Semidefinite Relaxations](https://papers-gamma.link/paper/57) - [Graph Embedding Techniques, Applications, and Performance: A Survey](https://papers-gamma.link/paper/52) - [VERSE: Versatile Graph Embeddings from Similarity Measures](https://papers-gamma.link/paper/48) - [Hierarchical Clustering Beyond the Worst-Case](https://papers-gamma.link/paper/45) - [Scalable Motif-aware Graph Clustering](https://papers-gamma.link/paper/18) - [Practical Algorithms for Linear Boolean-width](https://papers-gamma.link/paper/40) - [New Perspectives and Methods in Link Prediction](https://papers-gamma.link/paper/28/New%20Perspectives%20and%20Methods%20in%20Link%20Prediction) - [In-Core Computation of Geometric Centralities with HyperBall: A Hundred Billion Nodes and Beyond](https://papers-gamma.link/paper/37) - [Diversity is All You Need: Learning Skills without a Reward Function](https://papers-gamma.link/paper/36) - [When Hashes Met Wedges: A Distributed Algorithm for Finding High Similarity Vectors](https://papers-gamma.link/paper/23) - [Fast Approximation of Centrality](https://papers-gamma.link/paper/35/Fast%20Approximation%20of%20Centrality) - [Indexing Public-Private Graphs](https://papers-gamma.link/paper/19/Indexing%20Public-Private%20Graphs) - [On the uniform generation of random graphs with prescribed degree sequences](https://papers-gamma.link/paper/26/On%20the%20uniform%20generation%20of%20random%20graphs%20with%20prescribed%20d%20egree%20sequences) - [Linear Additive Markov Processes](https://papers-gamma.link/paper/21/Linear%20Additive%20Markov%20Processes) - [ESCAPE: Efficiently Counting All 5-Vertex Subgraphs](https://papers-gamma.link/paper/17/ESCAPE:%20Efficiently%20Counting%20All%205-Vertex%20Subgraphs) - [The k-peak Decomposition: Mapping the Global Structure of Graphs](https://papers-gamma.link/paper/16/The%20k-peak%20Decomposition:%20Mapping%20the%20Global%20Structure%20of%20Graphs) - [A Fast and Provable Method for Estimating Clique Counts Using Turán’s Theorem](https://papers-gamma.link/paper/24)

Comments:

Read the paper, add your comments…

Comments:

Great paper! ### Input graph in main memory It seems that to compute the suggested ordering (later used to compress the input graph), the graph needs to be stored in the main memory (as an adjacency list). However, if the graph already fits in the main memory of the machine, then compressing it is less interesting. Some experiments are carried on huge graphs that do not fit in the main memory of the machine if not compressed. The trick is that the web graphs are already compressed (maybe with the lexicographic url ordering) to compute the suggested ordering, while the considered social networks are actually not that large and fit in the main memory of a commodity machine. Footnote 21: "It is possible in principle to avoid keeping the graph in the main memory, but the cost becomes $O(n \log n)$.". How can I do that? ### Heuristic to minimize the average gap cost For social networks, it is shown that the compression is highly correlated to the average gap cost (average log gaps) if the "intervalisation" of the BV framework is turned off. The authors note that the suggested ordering is excellent at minimizing this average gap cost. And that even though it does not seem to minimize it directly. Can a heuristic that is explicitly designed to minimize this average gap cost lead to a better compression? ### Typos: - ref lacking: "label propagation [RAK07, ?]" - "until it is possible to do so" -> "until it is not possible to do so" - ref lacking: "Absolute Pott Model (APM) [?]" - "tecniques" - "Some simple experiments not reported here shows that the same happen" -> "Some simple experiments not reported here show that the same happens"
Read the paper, add your comments…

Comments:

Great paper! ### Input graph in main memory It seems that to compute the suggested ordering (later used to compress the input graph), the graph needs to be stored in the main memory (as an adjacency list). However, if the graph already fits in the main memory of the machine, then compressing it is less interesting. Some experiments are carried on huge graphs that do not fit in the main memory of the machine if not compressed. The trick is that the web graphs are already compressed (maybe with the lexicographic url ordering) to compute the suggested ordering, while the considered social networks are actually not that large and fit in the main memory of a commodity machine. Footnote 21: "It is possible in principle to avoid keeping the graph in the main memory, but the cost becomes $O(n \log n)$.". How can I do that? ### Heuristic to minimize the average gap cost For social networks, it is shown that the compression is highly correlated to the average gap cost (average log gaps) if the "intervalisation" of the BV framework is turned off. The authors note that the suggested ordering is excellent at minimizing this average gap cost. And that even though it does not seem to minimize it directly. Can a heuristic that is explicitly designed to minimize this average gap cost lead to a better compression? ### Typos: - ref lacking: "label propagation [RAK07, ?]" - "until it is possible to do so" -> "until it is not possible to do so" - ref lacking: "Absolute Pott Model (APM) [?]" - "tecniques" - "Some simple experiments not reported here shows that the same happen" -> "Some simple experiments not reported here show that the same happens"
Read the paper, add your comments…
Pages: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21