Arxiv link:
This a nice paper and I think you manage to keep your article easily readable. Specially the figures, such as figure 3, helped me follow your explanations. I haven't finished reading the paper but I have minor remarks/typo: - Page 9 in the definition of multigraph, should e(v, V) be transformed to e({v},V) in order to be completely rigorous? - I don't know what “maximum-entropy sampling” is but why quoting it ? - I don't get the use of Reversible Decompression, apart from being an extreme case of external information. I don't think this case deserve to be explained in detailed, as it does not have any impact on the understanding of the paper. - I find the notation for definition 10 a bit confusing. A Cartesian MultiEdge Partition is made of Cartesian products of two vertex subsets. The notation for each cartesian product uses subscript on vertex subset: $(V_i \times V'_i)$ for the $i$th product. This lead me to think that $(V_i \times V'_i)$ was a possible Cartesian product. This also lead me to think that Cartesian MultiEdge Partition are made of Cartesian product of vertex partition: $B(V \times V) = \{(V_i \times V_j)\}\ \forall V_i \in P_1, V_j \in P_2 \wedge P_1 \in B(V), P_2 \in B(V)$. I think all Cartesian product of vertex partition are Cartesian MultiEdge partition. Is there any Cartesian MultiEdge Partition that is not a Cartesian product of vertex partition? - In the conplete case after definition 11, I don't know the notation $\omega$ for the number of feasible partitions. - I think you missed a $\lambda$ in the lagrange function page 21. Should it be $q_{\lambda}(VVT)= |VVT| + \lambda Loss(VVT)$
Noé at 2018-07-23 15:33:54
Edited by Noé at 2018-07-24 13:55:03

You comment anonymously! You will not be able to edit/delete the comment.

Please consider to register or login.

Use $\LaTeX$ to type formulæ and markdown to format text.
When you post something to which you hold the copyright you authorise us to do distribute this data across the scientific community. You can post public domain content. All user-generated content will be freely available online. Please see this page to learn more about Papersγ's terms of use and privacy policy.