The k-peak Decomposition: Mapping the Global Structure of Graphs
Authors: Priya Govindan
Liked by: Maximimi, Open Reading Group
Domains: Graph mining
Tags: WWW2017
Uploaded by: Open Reading Group
Upload date: 2018-01-12 15:13:38

Comments:

Just a few remarks from me, ### Definition of mountain Why is the k-peak in the k-mountain ? Why is the core number of a k-peak changed when removing the k+1 peak ? ###More informations on k-mountains Showing a k-mountain on figure 2 or on another toy exemple would have been nice. Besides, more theoretical insights on k-mountains are missing : complexity in time and space of the algorithm used to find the k-mountains ? How many k-mountains include a given node ? Less than the degeneracy of the graph but maybe it's possible to say more. Regarding the complexity of the algorithm used to build the k-mountains, I'm Not sure I understand everything but when the k-peak decomposition is done, for each k-contour, a new k-core decomposition must be run on the subgraph obtained when removing the k-contour. Then it must be compared whith the k-core decomposition of the whole graph. All these operations take time so the complexity of the algorithm used to build the k-mountains is I think higher than the complexity of the k-peak decomposition. Besides multiple choices are made for building the k-mountains, it seems to me that this tool deserves a broader analysis. Same thing for the mountains shapes, some insights are missing, for instance mountains may have an obvious staircase shape, does it mean something ? ###6.2 _p_ I don't get really get what is p? ###7.2 is unclear but it may be related to my ignorance of what is a protein.
### Lemma 2 (bis): Lemma 2 (bis): Algorithm 1 requires $O(\delta\cdot(N+M))$ time, where $\delta$ is the degeneracy of the input graph. Proof: $k_1=\delta$ and the $k_i$ values must be unique non-negative integers, there are thus $\delta$ distinct $k_i$ values or less. Thus, Algorithm 1 enters the while loop $\delta$ times or less leading to the stated running time. We thus have a running time in $O(\min(\sqrt{N},\delta)\cdot (M+N))$. Note that $\delta \leq \sqrt{M}$ and $\delta<N$ and in practice (in large sparse real-world graphs) it seems that $\delta\lessapprox \sqrt{N}$. ### k-core decomposition definition: The (full) definition of the k-core decomposition may come a bit late. Having an informal definition of the k-core decomposition (not just a definition of k-core) at the beginning of the introduction may help a reader not familiar with it. ### Scatter plots: Scatter plots: "k-core value VS k-peak value" for each node in the graph are not shown. This may be interesting. Note that scatter plots: "k-core value VS degree" are shown in "Kijung, Eliassi-Rad and Faloutsos. CoreScope: Graph Mining Using k-Core Analysis. ICDM2016" leading to interesting insights on graphs. Something similar could be done with k-peak. ###Experiments on large graphs: As the algorithm is very scalable: nearly linear time in practice (on large sparse real-world graphs) and linear memory. Experiments on larger graphs e.g. 1G edges could be done. ### Implementation: Even though the algorithm is very easy to implement, a link to a publicly available implementation would make the framework easier to use and easier to improve/extend. ### Link to the densest subgraph: The $\delta$-core (with $\delta$ the degeneracy of the graph) is a 2-approximation of the densest subgraph (here the density is defined as the average degree divided by 2) and thus the core decomposition can be seen as a (2-)approximation of the density friendly decomposition. - "Density-friendly graph decomposition". Tatti and Gionis. WWW2015. - "Large Scale Density-friendly Graph Decomposition via Convex Programming". Danisch et al. WWW2017. Having this in mind, the k-peak decomposition can be seen as an approximation of the following decomposition: - 1 Find the densest subgraph. - 2 Remove it from the graph (along with all edges connected to it). - 3 Go to 1 till the graph is empty. ### Faster algorithms: Another appealing feature of the k-core decomposition is that it is used to make faster algorithm. For instance, it is used in https://arxiv.org/abs/1006.5440 and to https://arxiv.org/abs/1103.0318 list all maximal cliques efficiently in sparse real-world graphs. Can the k-peak decomposition be used in a similar way to make some algorithms faster? ### Section 6.2 not very clear. ### Typos/Minors: - "one can view the the k-peak decomposition" - "et. al", "et al" - "network[23]" (many of these) - "properties similar to k-core ."

You comment anonymously! You will not be able to edit/delete the comment.

Please consider to register or login.

Use $\LaTeX$ to type formulæ and markdown to format text.
When you post something to which you hold the copyright you authorise us to do distribute this data across the scientific community. You can post public domain content. All user-generated content will be freely available online. Please see this page to learn more about Papersγ's terms of use and privacy policy.