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Abstract Mining patterns from multi-relational data is a problenradting increas-
ing interest within the data mining community. Traditiowata mining approaches
are typically developed for single-table databases, aadhar directly applicable to
multi-relational data. Nevertheless, multi-relationatalis a more truthful and there-
fore often also a more powerful representation of realitiniNg patterns of a suitably
expressive syntax directly from this representation, s thresearch problem of great
importance.

In this paper we introduce a novel approach to mining pastermulti-relational
data. We propose a new syntax for multi-relational pattasisomplete connected
subsets of database entities. We show how this patternsignggnerally applicable
to multi-relational data, while it reduces to well-knowies (Geerts et al 2004) when
the data is a simple binary or attribute-value table. We psedRMiner, a simple yet
practically efficient divide and conquer algorithm to mingls patterns which is an
instantiation of an algorithmic framework for efficientlp@merating all fixed points
of a suitable closure operator (Boley et al 2010). We show timninterestingness
of patterns of the proposed syntax can conveniently be digghtising a general
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framework for quantifying subjective interestingness afterns (De Bie 2011b). Fi-
nally, we illustrate the usefulness and the general agplibaof our approach by
discussing results on real-world and synthetic databases.

Keywords Multi-relational data mining Pattern Mining Interestingness measures
Maximum Entropy modelling K-partite graphs

1 Introduction

Since the formalization of frequent itemset mining and eisgimn rule mining (Agrawal
and Srikant 1994), the focus of pattern mining research tastlynbeen on mining
frequent patterns in single-table databases (Srikant ayjrdwal 1996; Zaki 2000;
Uno et al 2004a; Zaki and Hsiao 2005) or graphs (Yan and Ha2;20@ramochi
and Karypis 2001). However, many datasets are inherentlti-nelational and the
information systems that manage them rely on multi-refetialatabases (MRDs).
This imposes the need for exploring more complex patterdscarresponding data
mining techniques. Application examples for multi-redatal data mining could be
mining patterns relating transactions, products and cibariatics of products, in a
sales database, or in a social network context, patterasnglauthors with papers
(co-authorship) as well as papers between each otherigoisat

The key challenge in multi-relational data mining is the wiéittn of a pattern
type that is adequately expressive to capture the struictihe data, while it is easy
to interpret. While Inductive Logic Programming approasfar multi-relational data
make use of a very expressive pattern syntax (Dehaspe andngsi 1999; Nijssen
and Kok 2003; Koopman and Siebes 2009), methods that woekttliron the data
instances have focused on transporting ideas from fredqenset mining to the re-
lational setting. The most common strategy is to first takefdt join of all the tables
of the MRD, after which standard itemset mining methods aaafiplied (Ng et al
2002; Koopman and Siebes 2008; Goethals et al 2010). HowievBattening the
MRD in this way important structural information is inevilg lost. Finally, all pre-
vious approaches rely on transferring the notionotirring patternandsupportin
the multi-relational setting either by measuring the supwith respect to the entries
of the join table (Ng et al 2002; Koopman and Siebes 2008) ¢ vaspect to just
one table or entity in the database (Goethals et al 2010;petend Toivonen 1999;
Nijssen and Kok 2003; Koopman and Siebes 2009). We argueltisatomplicates
the interpretation of the results, as it is not clear whatétams for a multi-relational
pattern to be frequent with respect to the join table or just @ble (See Sec. 5 for a
more detailed discussion.)

On top of these conceptual problems, most existing methadsining MRDs
also suffer from usability problems: the returned set ofgrat is often overwhelm-
ingly large and redundant, or subjectively not very inténgs Fortunately, these
problems have recently been addressed by the pattern nmesegirch community,
albeit in simpler settings (mostly itemsets in binary dat#s). This includes the def-
inition of new objective interestingness measures wittiowes properties (see Geng
and Hamilton (2006); Kontonasios et al (2012) for an ovewyjas well as the defi-
nition of general schemes to formalize subjective intémgsess (Gionis et al 2007,
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Hanhijarvi et al 2009; De Bie et al 2010; De Bie 2011b,a). Amotrelated devel-
opment, mainly aimed at reducing redundancies, is the fonumvaluating interest-
ingness of pattern sets, instead of individual patternsb@& et al 2006; De Raedt
and Zimmermann 2007). To improve multi-relational dataingmrmethods, some of
these ideas should be adopted.

Here we contribute on both these fronts: the conceptu@izand search for pat-
terns in MRDs, and the quantification of their interestirgmeén particular, in Sec. 2
we propose Complete Connected Subsets, a new type of pagtetax in MRDs
that captures the structural information of an MRD and daatsrely on the con-
cept of support, thus avoiding some of the pitfalls in eamverk on this topic. We
show that this type of pattern &asy to interpretit is generally applicabléo MRDs,
while in simple settings isubsumes itemsets as a special d@samore accurately,
tiles (Geerts et al 2004)). We further propose RMinesjraple yet practically ef-
ficient algorithm to mine all maximal Complete Connected Subsets.(8). The
algorithm is an instantiation of a general divide and comgraumeration frame-
work for mining closed sets of restricted pattern langug@edey et al 2010). We
also show that RMiner can easily integrate further constsahat preserve the struc-
tural properties of the search space. We exploit this byidhog a particularly useful
minimum-coverage constraint that substantially impra¥escomputation time. In
Sec. 4 we show that the proposed pattern syntax lends itedllteMormalizing the
subjective interestingness of pattersabject to certain prior knowledge on the data.
In a similar way as De Bie (2011b) has done for itemsets inrgidatabases, this
approach guarantees the interestingness of the returttedysain a well-defined set-
ting. We discuss related work in Sec. 5. In Sec. 6 we showtesalreal-world data
and qualitatively compare our pattern syntax to other nrelational pattern syn-
taxes. Finally, in Sec. 7 we show an evaluation of the intergsess measure, as
well as a computational evaluation of the mining algorithmsgnthetic datasets.

2 Multi-relational data and patterns

We first formalize multi-relational databases as considlaréhis paper. In an abstract
manner this formalization is reminiscent of the Entity-&&lnship (ER) model as ex-
plained in ElImasri and Navathe (2006). Then we show how an MR¥e formalise
it, is uniquely represented asfé-partite graph. Finally, we move on to defining the
proposed pattern syntax.

Multi-relational database (MRD)We formalize aelational databaseas a tupléd =

(E,t, R, R) whereF is a finite set ofentitiesthat is partitioned intd: entity types

by a mapping : £ — {1,...,k},i.e, E = E; U ... U E, with B, = {e €

E | t(e) = i}. Moreover,R C {{i,j} | i,5 € {1,...,k},i # j} is a set of
relationship typesuch that for eacki, j} € Rthereis a binary relationshipy; ;;
{{ei,e;} | ei € E;,e; € E;}. The setR then is the union of all these relationships,
e, R = U{i_’j}eR Ryi,51- Relationship types can be many-to-many, one-to-many, or
one-to-one, depending on how many relationships the estiif either entity types
can participate in. Note here that the fact that we do notalelationship types
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between an entity type and itself is not restrictive as wernadel this as having two
copies of the same entity type and a relationship type betesm.

Example 1Let us consider a toy example of a movie database, with ‘y&le’, and
‘genre’ as entity types, shown at the left hand side of FigiHere is a relationship
type between ‘year’ and ‘title’, specifying the year of r@se of the movie title, and
between ‘title’ and ‘genre’, specifying the genres of a neotiile. The first of these
relationship types is a one-to-many relationship typejewie second is a many-to-
many relationship type.

Remark 1 (What about attributes#t) an ER model, an entity can have attributes
associated to it. Our formalism is different in that eachitaite is treated as an entity
type of its own. Associating attribute values with the gnthey correspond to is
done by making use of a one-to-many relationship type beivtlee entity type of
the attribute and the entity (Elmasri and Navathe 2006)., Ehgthe toy example
considered before, ‘year’ and ‘title’ would typically be awlled as attributes of the
‘movie’ entity. However, we model them as separate entitiéth a relationship type
between them. Note also that the ‘title’ is used to repretsenéntity ‘movie’ as they
are one-to-one related. While this approach sacrifices stateemodelling freedom,
it allows a unified treatment of attributes and entities.sTikidesirable, as in the ER
model the distinction between attributes and entities isrofmbiguous, while we
wish our methods to be independent of such modelling choices

A graph representation of an MRDhe MRDs resulting from our definition, can

be represented as-partite graphs. A graph is calleld-partite if its nodes can be
partitioned into kblockssuch that there are no edges between the nodes of the same
block. In the representation of an MRD adapartite graph, there is a node for each
entitye € F inthe MRD, and an edge between two entiigande; if {ej,e;} € R.

We say that nodes representing entities of the same typd #ne same node type,

and similarly we say that edges representing relationsbiijge same type are of

the same edge type. Clearly, the resulting grapkidpartite, each block in the graph
containing nodes of the same node type. The graph repréisenté the toy MRD
described in Ex.1 is shown at the right hand side of Fig. 1.

The pattern syntax’he pattern type we introduce in this paper is called Coraplet
Connected Subset (CCS). In what follows we are going to fiymafine the notion
of completenesandconnectednedsr a subset of entities, and thus define a CCS.
Definition 1 (Completeness)A set F C E is complete if for alle,e’ € F with
{t(e),t(e’)} € Ritholds that{e, e’} € Ris(e),t(e)} -

Of course completeness alone does not suffice to have a ngéampattern def-
inition as it allows for completely unrelated (not conneljtentities. In the MRD of
Fig. 1, for example, the séfAction,2010 is complete but not connected.

Definition 2 (Connectednessp setF' C E is connected if for alk, ¢’ € F there is
asequence=ey,...,e; = ¢ with {e1,...,¢e;} C F suchthatfoi € {1,...,I—1}
it holds that{e;,e;11} € R.
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Of_genre
Movie

Genre genre title i
Bliame T title year
genre
Drama T2 T 2010
Di
rama Drama T3 T2 2009
History History T
T3 2010

Action History T3
Action T2

Fig. 1 Example of an MRD in table form (left) and in graph form (righthe entity types ‘genre’, ‘title’,
‘year’ correspond to different blocks in the graph and thities of each entity type correspond to different
nodes. The join table ‘Qfienre’ defines a many-to-many relationship between theyepfies ‘genre’ and
‘title’ and the table ‘Movie’ defines an one-to-many relaiship between entities ‘title’ and ‘year’. Two
entities are linked with an edge if they co-occur in a samé&tup

Note that a subset of size larger than one can be connected drdontains entities
of at least two different types.

AsetF C EisaComplete Connected SubsgiCCS) if it satisfies both connect-
edness and completeness. Intuitively a CCS captures tloeagrence of entities,
within and between different relationship types. In thisse it is a generalisation of
tiles (itemsets and their supporting transactions) (Geetral 2004) for the case of
MRDs. In the graph representation of the MRD, this pattepetgorresponds to a
K -partite clique.

As in other pattern mining tasks, the number of CCSs is tyfyicaassive even
for moderately sized databases (exponential in the numbentiies). Therefore
enumerating all CCSs is impractical. To reduce the comjmntakburden, we there-
fore opted to focus on only maximal CCSs which typically foansmall subset of
all CCSs. Amaximal Complete Connected SubsetMCCS) is a CCS to which no
element can be added without violating connectedness opletemess. Since each
non-maximal CCS is (by definition) a subset of an MCCS, theSgICCSs is a loss-
less representation of the set of CCSs. Additionally, weldiatgue that larger CCSs
are more likely to be of interest than smaller ones, as they ecaore information
than their subset CCSs.

Example 2In the MRD of Fig. 1 the set of entitiesT1, T3, Drama, History, 2010
represents an MCCS pattern. It is maximal as none of the réngaéntities can be
added without violating completeness. Looking at the gnaptesentation one can
see that this set of entities corresponds to a maximglartite clique. This pattern
provides the information that titles T1 and T3 are both pradlin 2010 and that are
both of genre Drama and History.

MCCSs in special cases of MRIZonceptually, MCCSs are easy to grasp, and the
empirical results will further demonstate that this patteyntax is a sensible and
intuitive one. An additional argument in support of MCCSghat they reduce to
well-known pattern syntaxes of well-studied forms of data.

Consider a market-basket database, containing two epftigst items and trans-
actions. There is one relationship type representing ttietliat an item was bought
in a transaction. An MCCS is a maximal tile in this databaseqi® et al 2004) or
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T
T1 T2
T3

- o o o

o o - -

T4

T4

Fig. 2 Transaction database as a bipartite graph. Transactiahgesns represent different blocks of the
graph and are linked with edges according to the ‘1’s of tinaulyi matrix.

B1

PK1
pk a b c A1 < B2
PKI A1 B1 C1 - PK2
PK2 A1 Bl Ci

A2 C1
PK3 A2 B2 2 N

C2

Fig. 3 Attribute-value database asi-partite graph. Attributes represent different blocks tef graph
and attribute values represent the nodes. Key and non-kéyuse values are linked if they co-occur in the
same tuple of the attribute-value table.

a closed itemset with its supporting transactions (Yaha 2006). It is well-known
that a binary item-transaction database can be represbytateans of a bipartite
graph (Zaki and Ogihara 1998), and indeed this graph is xthet graph represen-
tation of this special case of an MRD. An MCCS in this bipartitaph is a maximal
biclique. This is depicted in Fig. 2, showing a database i@&felitems and four trans-
actions and the corresponding bipartite graph. The set@ésiar' 1, T2, 11, 12} is an
example of a maximal tile or a maximal biclique in the grapbresentation.

Similarly, for a single attribute-value data table the grtiypes in our formaliza-
tion consist of the entity type that uniquely identifies thws of the table (typically
identified by a primary key attribute), along with an entigpe for each of the (non-
key) attributes. Hence, for an attribute-value table with- 1 (non-key) attributes,
we would haveK entity types andy — 1 relationship types between every non-key
entity type and the primary key entity type. Traditionatyese tables were binarized
into a table that contained primary keys as transactions#trilute values as items,
in order to apply itemset mining (Srikant and Agrawal 1996).MCCS in this type
of table contains a set of entities representing attrivalaes and necessarily also a
set of entities corresponding to the primary keys of theetabhis is equivalent to a
maximal set of attribute-values along with the supportietges transactions (tiles) in
the binarized version of the table. Figure 3 shows an ategivalue data table with
three attributes and three transactions and the equivAlgudrtite graph representa-
tion according to our formalization. Here, the set of eas{iAl, PK1, PK2, B1, C}
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is an MCCS or a maximal tile or a closed itemset with its sufipgttransactions in
the binarized version of this table.

We therefore showed that MCCSs correspond to closed itsnrs#¢he reduced
case of just two entity types. This equivalence is an aduitionportant argument in
favour of focusing on only mining MCCSs, as the set of closeddient itemsets have
been used extensively in the past as a lossless compreg$stmset of all frequent
itemsets (Uno et al 2004a; Zaki and Hsiao 2002; Uno et al 200dia et al 2006).
As a cautionary note, we wish to point out that the notion obximal CCS is related
to the notion of a closed itemset but not directly relatech®riotion of a maximal
frequent itemset (Burdick et al 2005).

3 RMiner: An algorithm to search for all MCCSs

In the previous section we defined the pattern syntax of CG&sva argued why it is
sensible to focus on mining MCCSs only. Of course, for thisich to result in a true
efficiency gain, an algorithm to mine MCCSs should succdigsvoid enumerating
the majority of CCSs that are not maximal.

To achieve this, we develop an algorithm which is an instioth of a general
divide and conquer algorithmic framework for listing all gxints of an arbitrary
closure operator in a constrained search space, introdu¢Bdley et al 2010; Boley
2011). This framework is used to efficiently enumerate alBS@hat are fixpoints of
a closure operator, to which we will refer asedCCSs. The set of closed CCSs
contains the set of all MCCSs, while it is typically a smalbsat of the set of all
CCSs (see Sec. 3.1 for more details).

In Sec. 3.1, we show that the fixpoint listing algorithm iséed applicable to
the set of CCSs. We then give an overview of the algorithm atrdduce the pro-
posed closure operator in Sec. 3.2. Finally, in Sec. 3.3,afieeladditional minimum
coverage constraints and show how they can be incorponaiiethe same algorith-
mic framework. These additional constraints can be usedrtbdr reduce the search
space on specific areas of interest, considerably redutcghgdmputation times.

3.1 The applicability of the fixpoint listing algorithm

The divide-and-conquer fixpoint listing algorithm enumeszall closed sets of a clo-
sure operator from a given set systeas long as this set system possesses a structural
property calledstrong accessibilitfBoley et al 2010). Aset systemis a family of
subsetsF C P(A) over some ground set, whereP(A) is the power set ofl. At

the end of this subsection we will show that the set of CCSeaddorms a strongly
accessible set system, demonstrating that the fixpoimdistigorithm is applicable

for enumerating altlosedCCSs.

1 In contrast to some traditional fixpoint enumeration algnis, as they are for instance used in the
context of Formal Concept Analysis, this divide and conqumgroach does neither assume an underlying
complete lattice nor that the fixpoint set is closed undegrggction. This is important because the set
system of CCSs is not necessarily closed under intersefeiomto connectivity) and two MCCSs cannot
be joined to a common supremum (due to completeness).
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A setF € Fis calledclosedif it is a fixpoint of some closure operatpr F —
F,ie.,p(F) = F. An operatorp : F — F is aclosure operatorif it fulfils the
following three properties (Birkhoff 1967):

— Extensivity:F' C p(F) forall F € F;
— Monotonicity:p(F') C p(F") forall F, F’ € F with F C F”;
— Idempotencep(p(F')) = p(F) forall F' € F.

The fact that a maximal CC$ < F is always closed, trivially follows from
the extensivity of the closure operator and the definitiomakimality. Indeed, iff’
cannot be extended by any other entity, it follows from egiéty and from the fact
thatp(F) € F, thatp(F) = F. This means thaF is fixed under the closure operator
and thus a closed CCS.

In Sec. 3.2, we will return to the definition of the particutémsure operator used
in this paper. Before doing that, we will first define the seiteyn of CCSs and show
that it is strongly accessible. This is a property that isunesgl for the applicability of
the algorithmic framework from Boley et al (2010). For a detseD = (E,¢, R, R)
theset system of CCSds defined as

Fp ={F C E | F connectedA F completg.

The property of strong accessibility intuitively meanstttoa two CCSsX, Y €
JFp with X C Y, itis possible to iteratively extend by one element at a time, only
passing via sets from the set system and ultimately reguittily'. Formally, for a set
systemF C P(A), whereA is the ground set, and a st € F, let us denote by
Aug(F) = {a € A| FU{a} € F} the set of valicaugmentation elementof F.
ThenF is calledstrongly accessibléif forall X c Y C Awith X,Y € F there is
an element € (Aug(X) \ X) NY. We can now state the desired result.

Theorem 1 For all relational database® = (E,t, R, R), the set systenfp of
CCsSs is strongly accessible.

Proof To prove this theorem, we additionally rely on the notion ofirdependence
system:F is anindependence systenif for all X € F, foreveryY C X,Y € F.
The set systenFy is the intersection of the set system of connected subsdtthan
set system of complete subsets. First we are going to pratehk set system of
connected subset$;, is a strongly accessible set system. Koy’ € F, X C Y
assume that there is roe (Aug(X) \ X) NY. This means that there is no element
einY \ X such thae € Aug(X) which means that” andY \ X are disconnected.
This is a contradiction sincg € F.

Next we prove that the set system of complete subs€tss an independence
system. For aX € F’ assume there is¥ C X,Y ¢ F'. This means there exist
e,e/ € Y such that{t(e),t(¢’)} € R and{e,e'} ¢ R. However becaus¥ C X,

e, e’ € X which is a contradiction because it means thag 7.

Thus, the set system of CC39 is an intersection of a strongly accessible set
systemF and an independence systérh It can be confirmed that this intersection
is indeed strongly accessible: L&t Y with X C Y be in both set systems. Then

2 strongly accessible set systems generajisedoidssuch as, e.g., poset ideals (see Boley (2011, Sec.
3.5.2) and Korte and Lovasz (1985)).
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there must be an augmentation elemgnt Y \ X with X U {y} € F, because
F is strongly accessible. The same augmentation elementlsarba used in the
intersectionF N 7’ becauseF’ being an independence system impliés (X U
{y}h) e F.O

3.2 The basic RMiner algorithm

As we have already established that the divide and conqumgifiklisting algorith-
mic framework of Boley et al (2010) is applicable to the caS€@Ss, we now give
an overview of the algorithm and define a suitable closureaipe

The general structure of this divide-and-conquer algorite shown in Algo-
rithm 1. The algorithm can be described in terms of thefséan intermediate solu-
tion), the set of valid augmentation elemedisg(F’), the setB of elements already
considered as extensions kg and a closure operatgt In each recursive call, the
algorithm selects an elemenfrom the set of augmentation elements and splits the
search space into two subtrees: one subtree in which all GCisle the element
(line 7) and another subtree in which all CCSs excleidehich is achieved by adding
itto B (line 10). Adding nodes fromlug(F') only, ensures that every set explored is
a CCS. The fact that only closed patterns are sought is eshsutme 2, where the
expanded sef'U{e} is potentially further expanded by applying the closureraf.
The recursive call in line 7 is applied if this expansion doesinclude any elements
from B (line 4) thus avoiding duplicate solutions, and if it doésiorrespond to a
maximal solution (lines 4-5).

As the divide and conquer fixpoint listing algorithmic frawerk enumerates all
closed sets, we added lines 4-5 to ensure that RMiner outp@GSs only, i.e. CCSs
F for which there are no augmentation elements not ydt.ifrormally, this is per-
formed by checking whethdr = Aug(F).

Algorithm 1 RMiner: List all MCCSs
RMiner (F, B)

1: Selecte € Aug(F) \ (F U B)
2. F' =g(Fu{e})

3:if F/ N B = (then

4:  if F/ = Aug(F’) then

5: OutputF”’
6
7
8
9

else
RMiner (F’, B)
: end if
: end if
10: RMiner (F', BU {e})

As defined in Sec. 3.1, the set of augmentation eleméntg F') of a setF’ from
a set system is the set of all elements that can be individaadllied toF' to yield
another set from the same set system. Specifically for theyst¢émFp, of CCSs,
and given a relational databaBe= (E, t, R, R), the setAug(F") corresponds to the
following set: Aug(F') = {e € E | F U{e} is complete and connectpd
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Note that for the sake of efficiencyug(F') can be recursively updated after ex-
pandingF to F”, as we explain in Sec. 3.5.

The closure operatoin order to define a closure operator for the set systgnve
make use of the set of compatible entities which is definedlésis:

Definition 3 (Compatible Entities) For a relational databade = (E,¢, R, R) the
set of compatible entities of a sét € Fp is defined aslomp(F) = {e € E |
F U {e} is completé.

Clearly, Comp(F) D Aug(F). We note that, as opposed #ug(F), the set
Comp(F) is an anti-monotone set, i.e., féf' O F, Comp(F’) C Comp(F). This
follows from the observation that bigger sets have less etile elements than their
subsets. We now define the following operator.

Definition 4 (g operator) For a relational databage = (E,t, R, R) we define the
operatorg : Jp — P(F) as

g(F) = {e € Aug(F) | Comp(F U{e}) = Comp(F)} .

In order to conclude in Corollary 1 below thais a closure operator afp, we
first need to prove that the codomaingis Fp, and then prove that three properties
of a closure operator, i.e., extensivity, monotonicity &empotence hold.

Proposition 1 For all relational database® = (F,t¢, R, R), the codomain of the
operator is the set systeffi, of CCSs.

Proof We need to show that for every CO8 € Fp, g(F) is also complete and
connected.

Connectedness follows trivially from the fact that onlyraknts fromAug(F)
are added, i.e. only elements for whighU {e} is connected.

To show completeness, let us assume §tiét) is not complete. This means that
there exists a pair of elementse’ € g(F) such that{t(e),t(e’)} € R and{e,e'} ¢
R. However, it holds trivially that € Comp(F U {e}) ande’ € Comp(F U {e'}).
Exploiting the fact thaComp(F U {e}) = Comp(F U {e'}) = Comp(F) (from
the definition ofg), this means that € Comp(F U {e'}). Thus by definition of
compatibility alsoF’ U {e} U {¢’} is complete—a contradiction.

It is trivial to see that the operatgris extensive as it does not remove any el-
ements from the set it is applied to. Let us now prove tha also monotone and
idempotent.

Proposition 2 For all relational databased = (E,t,R, R), the operatorg is
monotone.

Proof Assume the operator is not monotone, i.e., there B'ar’ C F', F, F’ € Fp,
such thatg(F) ¢ g(F’). This means thafe € g(F) such that ¢ ¢(F’). By the
definition this can happen if:
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— e ¢ Aug(F"). This cannot be becaude U {e} is not connected, since €
Aug(F) andF" is a CCS withF” D F'. Therefore it must be becausé U {e}
is not complete. Thereforéf € F’ such that{t(e),t(f)} € R but{e, f} & R.
Thereforef & Comp(F U{e}). However sincéd” D F andf € F’, it must hold
thatf € Comp(F). Since we have assumed that g(F), this is a contradiction.

— Comp(F" U{e}) C Comp(F") (because of the anti-monotonicity of th&mp
set). Therefore there is afi such thatf € Comp(F’) but f ¢ Comp(F' U
{e}). From the definition otompletenesthis means thaft(e), t(f)} € R, but
{e,f} & R. Thereforef ¢ Comp(F U {e}). On the other hand sincg €
Comp(F') andF’ D F, it follows that f € Comp(F). This is a contradiction
since we have assumed that ¢(F).

O

Proposition 3 For all relational database® = (F,t, R, R) with the property that
Je € E such that{e} U E; is complete and connected for ar ¢(E), the operator
g is idempotent.

Proof Assume that for a databa®e = (E,t, R, R), such thatfle € E such that
{e} UE; is complete and connected for &g ¢(E), the operatoy is not idempotent.
This can only happen iflug(F) 2 Aug(g(F)), because ifAug(F) 2 Aug(g(F))
there can be no additional element holding the properti¢se€tlosure Aug(F') 2
Aug(g(F)) meansthalf € g(F) suchthadi € t(Aug({f})) withi & t(Aug(F)).
But sincef € g(F), this can happen only @ omp(FU{f})NE; = Comp(F)NE;.
However, becausé ¢ t(Aug(F)), it follows that Comp(F U {f}) N E; = E,.
Therefore the seF; U { f} is complete and connected. This is a contradiction.

Corollary 1 For all relational database® = (F,t, R, R), with the property that
Je € E such that{e} U E; is complete and connected for ar ¢(E), the operator
g is a closure operator.

This Corollary 1 together with Theorem 1 finally shows comess of Algo-
rithm 1.

3.3 The RMiner algorithm with additional constraints

In Sec. 3.2 we presented an algorithm to mine the set of MC@®&nbmerating the
set of closed CCSs. To increase the scalability of the dlyoreven more, we define
a pattern syntax which corresponds to CCSs that satisfy ditiathl constraint. The
goal now is therefore to mine maximal, constrained CCSs lyramating a smaller
set than the closed CCSs.

More specifically we define a constraindn the minimum number of entities per
entity type, and we refer to it aminimum coverage constraint/hen reduced to the
binary transaction database case, this constraint camespto having a minimum
number for items in a pattern as well as a minimum number opstijng transac-
tions. We now formally define this constraint.
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Definition 5 (Minimum coverage constraint)
For alli € ¢(F) of a relational database = (F, ¢, R, R), we fix a number; € N
and define

1, ifVi e t(E),|FNE;| > ¢
o(F) = i Vze.( ), [FNE;)|>c¢
0, otherwise

In order to exploit the fact that we are interested in mininty@ subset of max-
imal CCSs, i.e., the ones that satisfy the constraint, wd tease this constraint for
pruning (in line 6 of Algorithm 1). However( F') cannot directly be used for pruning
as the invalidity of the constraint on an enumerated GG®es not imply invalidity
of its complete and connected supersets. A correct way aiipgus to check the va-
lidity of the constraint on the s¢Comp(F') \ B). Recall here thaB in Algorithm 1
is the set of elements already considered as extensidns@hecking the validity of
the constraint on the se€omp(F) \ B) means verifying if the constraint would end
up being satisfied in the most optimistic case when all allde&zaompatible elements
are added t@'. If (Comp(F') \ B) does not satisfy the constraint, no CCS that is a
superset of" will ever satisfy the constraint as there exist insufficiel@ments that
F could potentially be extended with in order to satisfy thastoaint. Thus any set
F for which the constraint is not satisfied 06'omp(F) \ B) can be pruned.

In what follows we formalize this intuition by defining an wgpboundz of the
constraint that is based ofComp(F) \ B), whereB is the set of elements already
considered as extensions o We then prove that is anti-monotone which allows
us to show that the set system of CCSs that sati&ystrongly accessible, such that
the divide and conquer fixpoint listing algorithmic framewoemains applicable.

Definition 6 (Constraint upper bound)
For alli € ¢(E) of a relational databade = (E, ¢, R, R), we fix a number; € N
and define
&(F) = 1, if Vi e t(E),|(Comp(F)\ B)N E;| > ¢
~ )0, otherwise ’

whereB is the set of elements already considered as extensidns to

Clearly,c(F) > c¢(F) for all F € Fp becauseF C (Comp(F) \ B) and thus
|(Comp(F) \ B) N E;| > |F N E;|. This means that whenever the upper bound is 0
the constraintis 0 as well. However this not true for wherupger bound is 1, which
means that the upper bound of he constraint can only be uséai¥eard pruning.

Proposition 4 The upper bound(F') is an anti-monotone constraint,i.edfF’) = 0
for a setF then for everyf” O F, &(F') =0

Proof Assume the contrary, i.e., for a SBtsuch that(F') = 0 thereisasef’ D F
such that(F') = 1. This means thati € ¢t(F) such that(Comp(F)\ B)NE;| < ¢;
but|(Comp(F’) \ B’) N E;| > ¢;. From the anti-monotonicity of the s€tomp we
have thatComp(F’) C Comp(F). Also B’ O B. Therefore(Comp(F’) \ B') C
(Comp(F) \ B) which means that the assumption we made leads to a contoadict
Therefore the(F') is an anti-monotone constraint
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We are now going to show that tlset system of CCSs that satisfg in a rela-
tional databas® = (E, ¢, R, R) defined as

Fc ={F C E| F connectedh F completer ¢(F) = 1}

is strongly accessible such that the divide and conquerififisting algorithm can
be used directly to enumerate the set of closed CCSs thatystite upper bound.
Then we are going to show how Algorithm 1 is adapted usiagd that it outputs
exactly the set of maximal CCSs that satisfy the originakt@intc.

Proposition 5 For all relational database® = (F,t¢, R, R) the set systenf¢ is
strongly accessible.

Proof From the anti-monotonicity of it follows that the set system of subsets sat-
isfying ¢ is an independence system. Thi#g; is an intersection of a strongly ac-
cessible set system (hameRy) and an independence system. From the proof of
Theorem 1 we already know that the intersection of a stroagbessible set system
and an independence system is strongly accessible.

To adapt Algorithm 1 to enumerate only the closed CSSs thatfysshe upper
bounde, we only need to add the extra pruning condition to line 3:

if FNB=0A¢F')=1then

It remains to show that the adapted algorithm outputs ex#tet! set of maximal
CCSs that satisfy the original constraint.et us denote a&; the set of closed CCSs,
C, that satisfye, asM; the set of maximal CCSsy1, satisfyinge and asM . the set
of maximal CCSs satisfying. We already know that C C. ThereforeM; C C..
From the additional fact that maximal solutions cannot iereed and is an upper
bound ofc, it follows that Mz = M.. ThereforeM. C Cz, which means that the
adapted algorithm enumerates a superset of the set of ma@iGHs that satisfy:
and outputs exactly this set.

3.4 lllustrating Example

Before analysing the performance of RMiner we give an ithting example of how

it runs. Figure 4 shows the search space of RMiner on a toyseiatamprising of

four entity types and two relationship types. It also shawdetail the values of all

the relevant sets for the three running steps of RMiner thi@espond to the leftmost
branch of the tree.

3.5 Performance

In Secs. 3.1, 3.2 we showed the applicability of the fixpoisting framework and
described the algorithm at a high level. Here we show how Atlgm 1 is imple-
mented, we discuss time and space complexity and give additimplementation
details which make the algorithm practically efficient. Toow the space and time
complexity we follow a similar procedure as Boley et al (2010
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type 1 type 2 type 3 type 4

AN, B

fat {b} {C} {d} {e} K

2 1. F={} 2. F={a)
Adi(f)=(a.b,c.d,e.fk} select o

selecta Adj({a})={a,c.e}
{ac} {ae} {bd} {cf} (dg} {ef} Comp({})={a.b,c.d,e,fk} Comp({a})={a,b,c,e.f k}
2 Comp({a})={a,b,c,e,f.k} Comp({a,c})={a,c.f.e}
g(fah)={ g({a.ch={
¥ oy
{acf} {ace} {aef} {bdg} {cfe} 3. F={a,c}
| select f
% Adj({a,c})={a,c.e,f}
{acfe} Comp({a,c})={a,c.e.f}
Comp({a,c,f})={a,c,e,f}
g{ach={ace/f}

Fig. 4 lllustrating example of running RMiner on a toy dataset casipg of four entity types and two
relationship types. The left part of the figure shows thedeapace of RMiner for this toy dataset. The
plain arrows represent the steps of RMiner, while the daahresivs represent the search steps if the closure
operator was not used. The right part of the figure shows wildbee values of all the sets for the running
steps of RMiner that correspond to the leftmost branch of#aech tree.

Algorithm 2 Implemented RMiner

Global:

1: Comp_list List of Compatible elements for every entity.
2: Rel_list List of related types for every entity type.
Main ()

1: RMiner@, @, Comp(0), Aug(0), types(0))

RMiner (F, B, Comp(F'), Aug(F), types(F))

1: forall e € Aug(F) \ (F U B) do

2:  types((F U{e})) = types(F) U Rel list(t(e))

3:  Comp(F U{e}) = Comp(F) N Comp_list(e)

4:  Aug(F U{e}) = construct_aug(Comp((F U {e})), types((F U {e})))
5:

6

7

8

F'" = compute_closure(Aug(F U {e}), Comp(F U {e}))
if /N B = (then
if " = Aug(F’) then

OutputF”’
9: else
10: RMiner (F’, B, Comp(F U {e}), Aug(F U {e}), types(F U {e}))
11: end if
12:  endif
132 B=BU{e}
14: end for

ImplementationThe implementation of RMiner is shown in Algorithm 2. We stor
two types of global information which we get directly fronetbata set. A structure
namedComp_list, which contains the set of compatible entit&smp(e) for every

e € F and a structure name@e!_list which contains all entity types an entity type
is related through the relationship types, for every eryipe.
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In principle, the choice of the elemene Aug(F) \ (F' U B) in line 1 of Algo-
rithm 1 is free. We assume an arbitrary ordering of the elésien” and implement
the second recursion of Algorithm 1 and the selection of ameht with a for loop.

The implementation of RMiner is based on the fact that whetiregan element
e to a setF' the we can comput€omp(F U e) asComp(F Ue) = Comp(F) N
Comp(e), because adding an elemento a setF' can only reduce the set of com-
patible elements due to the anti-monotonicity of this siee(3). Also by keeping
track of the entity types that are related to the entity tygesady inF’ (line 2) we
can computedug(F') from Comp(F') by iterating through it and considering only
entities of these types.

Space Complexity.et Siypes, Scomp aNAS 4,4 the space required for storingpes,
Comp and Aug respectively. The total space complexity for this impletaéon is

1 X (Stypes + Scomp + S aug) Wheren is the number of entities in the input data, as
we need to store these sets as many times as the depth of the sea. Letn be
the number of entity types in the input data. For the indigidhomplexities we have:

— Stypes 1ISO(m)
- Scomp is O(n)
- SAug is O(n)

Therefore the total space complexity@$n?) + O(n * m) which finally isO(n?).

Although this space complexity is quadratic to the the irgiee, the scalability
experiment we did in Sec. 7.3 shows that in practice it app&abe linear. This
is because in practice the depth of the search tree is verlf Emanost cases the
search space gets less than 2 times deeper for a two orderagoiitode increase
of the input size). However the theoretical space compftecain become linear as
well if one follows the implementation strategy of the mosiifialgorithm proposed
in (Boley et al 2010).

Time ComplexityWe study the time complexity of Algorithm 1 in terms of the alel
between producing two closed CCSs. The total complexityvisrgby the number
of closed CCSs times the delay between producing two clos&8isCLetl, be the
complexity of computing the closur&;,; the complexity of intersecting two sorted
sets which is the complexity of computing the §&tmp, T4,, the complexity of
computing the seflug, Ty ,.s the complexity of computing the segpes and T,
the time to check the equality of two sorted sets. In the woaise the time between
producing two closed CCSs (lines 8 and 10 of Algorithm 2) is (Tyypes + Taug +
Tine +T,), Wheren is the number of entities in the input size. This correspdadse
worst case time in which no closed CCS is produced becau$e abindition in line
6 being false. Letn be the number of entity types in the input. All the sets ineolv
are ordered. For the individual time complexities we have:

— Tiypes IS O(m).

— Tins is O(TL)

— Taug: 18 O(n).

— Tyrisn x Teq, which isO(n?).
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Therefore, the delay between producing two closed séb$iis). Note here that
in the case of RMiner with constraints the complexity of caripg ¢(F') is O(n)
and does not change the delay.

Practical PerformanceAlthough the time delay between producing two closed CCSs
isO(n?), practically it depends on the size of the dety(F)\ (FUB) for the number
of times the closure is computed without any closed CCS bgiiaduced and the set
Aug(F) for the number of elements checked if they are in the cloguteg(F’)|
depends on the type of data and is smaller for sparser data-smwever since the
next closed CCS is produced only whehn B = () we can incorporate this in the
computation of the closure and stop checking if any more efgmare in it as soon
as one of them belongs t8. To further enhance the effectiveness of this approach,
we additionally choose a specific ordering of the entitie&'jin terms of increasing
cardinality of the setlug(e). This way elements with smallug(e) which are going
to need a small number of closure checks are consideredrulstlaments which are
going to need a larger number of closure checks are consiitier. When elements
that need more closure checks are considered, th8 $&ts increased as well and
therefore it's more likely that less closure checks are done

In the case of RMiner with constraints the total time depesrd¢he number of
closed CCS that satisfy, i.e., the cardinality of the enumerated set of CCSs. This
number depends on the order according to which elememsgfF) \ (F U B) are
considered and can be reduced by first considering entitigpes not yet satisfying
the constraint (if any). This helps pruning branches thaelsupersets not satisfying
the constraint. In this case we therefore rearrange the ofdbe entities in every
sub-call so that elements with smaller cardinality of thedseg({e}) that are also of
a type not yet satisfying the constraint are considered first

Finally improvement in the practical performance can beaivied if all sets are
stored in composite structures of separate lists for diffeentity types. This way the
setAug(F') does not need to be stored and computed explicitly as therdd be a
for loop iterating over the entity types tflomp(F') and only considering entities of
types intypes(F'). Also the computation of(F') in this case can be done ®(m)
which is an improvement since it holds that< n.

4 Assessment of patterns

Although much smaller than the total number of CCSs, the rarmolb MCCSs is
usually still too large to be practical for an end user. Thisimilar to the fact that
the set of closed itemsets typically needs further redndiiobecome useful. Typ-
ically this problem is addressed by selecting or rankingegpas using objective or
subjective interestingness measures (Geng and Hamilto®)2Blere, we choose to
define interestingness with respect to a specific type of imformation, by defin-
ing an interestingness measure which deems an MCCS to beimeresting if it
is more unexpected given this prior information. More sfiegily, we consider as
prior information the number of relationship instancesheaatity is involved in, in
the different relationship types of the MRD. This corresp®io the degree of each
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node in the different relationship types of thépartite graph representation of the
MRD. An MCCS is more interesting if it is harder to explain bd%n this prior in-
formation alone. For example in the setting of a movie MRDMIDCS containing
directors that have directed many movies would be deemesdnésresting by our
approach than an equally large MCCS containing less prdlifactors, as the latter
MCCS cannot as easily be attributed to randomness and isumesg@ected.

To introduce the interestingness measure, we can closkbwfthe work pre-
sented in (De Bie 2011b; De Bie et al 2010), where it is arghatigubjective inter-
estingness can be formalized by contrasting patterns withcaground model that
is the Maximum Entropy model subject to the prior informati®hus we only need
to detail the Maximum Entropy model for the case of MRDs (see. 8.1), and the
approach to contrast MCCS patterns with this model to aatvaen interestingness
measure (see Sec. 4.2).

4.1 Maximum-Entropy model of the user’s prior information

We consider as prior information the number of relationshgiances each entity
is involved in, for every relationship type in the MRD. Fallmg De Bie (2011b),
we formalize this prior information in a probability didttition P, fitting the Max-
imum Entropy distribution on th#RD, with constraints on the expected degree of
the nodes for every relationship type being equal to thdinaalegree. This is the
distribution of maximal uncertainty about the data withyotfile prior information as
bias.

The nature of the constraints is such that they are defineeMiny relationship
type Ry; j of the MRD without imposing any dependence between the relationship
types. Therefore, the Maximum Entropy distribution for M&D subject to these
constraints will be a product of independent Maximum Engrdjstributions, one
for each relationship type. Indeed, if there were deperidsritween the relation-
ship types, the Entropy of the joint distribution would be&lweed by their mutual
information (Cover and Thomas 2005), and would therefotebeomaximal. Rep-
resenting each relationship type as a binary databysevith D;;(k,l) = 1 when
(e}, €t) € Ry; 3, the Maximum Entropy distribution for the MRD is thus:

P(Ui;Dij) = [ [ Pij (D).
ij

Maximizing the Entropy for every relationship tygey; ;; of the MRD repre-
sented by a binary matrik;; subject to constraints on the expected number of re-
lationship instances for every entity, is equivalent to maging the Entropy of a
distribution for a binary database subject to constraintthe expected row and col-
umn sums. The solution of this problem was shown to be a ptagfindependent
Bernoulli distributions (De Bie 2011b):

P;j(Dij) = HPZ;}(DU(/@ 1),

exp (Dij (k, Z)(_/\i'cj - :ulij))
1+ eXP(_)‘fj - ,Ulij)

)
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Where)\fj, ulij are parameters that can be computed efficiently. Indeedh@sns
in De Bie (2011b), they can be found by solving the Lagrangd dfithe maximum
entropy optimization problem. This is a convex optimizatmroblem of which the
Hessian and the gradient can be computed efficiently, swathtthan be solved ef-
ficiently using e.g. a few Newton iterations, or alterndgivilie conjugate gradient
method for particularly large problems. For sparse dasesighificant further opti-

mizations can be made (See De Bie (2011b) for full details).

4.2 Contrasting MCCSs with the Maximum Entropy model

An interesting pattern conveys as much information as ptessihen contrasted with
the user’s prior information, as concisely as possibleloohg earlier work (De Bie
2011b), we can formalize this idea by quantifying the intéregness of an MCC&
as the ratio of the self information of the MCCS and its deztion length:

_ Selfinformatiori ')

Interestingnesd”) = ipti '
nterestingness’) DescriptionLength#")

Here, the self information of an MCCS is defined given the plolity of its
edges under the Maximum Entropy model, as:

Selfinformatiof F') = — Z Z log(Pf(1)).

{i,j}€R {k,1}:k€FNE, IcFNE,

An MCCS is described most naturally by the set of entitiesoititains. More
specifically, we choose to describe MCCS patterns by spagiffor each entity
whether it does or does not belong to the pattern. To spduiflyan entity belongs to
an MCCS, we will use- log(p) bits, and to specify it does not belong to the MCCS
we will use— log(1 —p) bits, wherep is a probability parameter. Such a code satisfies
Kraft’s inequality exactly, and is thus optimal and asyntigtly achievable (Cover
and Thomas 2005). Using this approach, the descriptiorthesigan MCCS pattern
F with n = | F| entities and given that the graph of the MRD Rés= | F| entities is
given by:

DescriptionLengthF’) = — > log(1 — p) — >_ log(p),
iZF ieF

= nlog (1%17) + N log (1—;) .

In De Bie (2011b) it was suggested to geby default to the density of the
database (ratio of the number of relationship instancesd@ontimber of entities),
an approach we adopted in our empirical results as well. Mewéhe parameter can
be tuned so as to bias the search more toward larger in nunfilmedes MCCSs
(largerp) or toward smaller in number of nodes MCCSs (smalleif desired.
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5 Related Work

Mining multi-relational data is a research topic that hasrbeoncerning the data min-
ing community for a long time (Srikant and Agrawal 1996). Mpeevious methods
on this topic are frequent pattern mining methods eitheedas Inductive Logic

Programming (ILP) (Dehaspe and Toivonen 1999; Nijssen avkl 2003; Garriga

et al 2007) or generalizing ideas from frequent itemset mgro the relational set-
ting (Ng et al 2002; Goethals et al 2010; Koopman and Sieb@8;20erf et al 2009;

Ji et al 2006). We discuss these methods in Sec. 5.1.

Although we consider our method as a pattern mining methadesour MRD
formalisation allows for a graph representation of the dgtaph mining methods
are related as well. We discuss these methods in Sec. 5t fame section we also
discuss recent work on networks with multiple types of natesinteractions, which
is only broadly related since the mining tasks consideredary different to the one
in this paper. Finally in Sec. 5.3 we discuss related work ¢lees not fall into the
categories mentioned above.

5.1 Mining multi-relational databases

Well known ideas and algorithms from frequent itemset nunaan be used for
MRDs unaltered if applied on the join of all tables. The synté this type of pat-
terns is essentially that of itemsets, with items in thisedasing attribute values and
transactions being the tuples of the join table (Ng et al 2@2&ethals et al 2010;
Koopman and Siebes 2008). The characteristic of this pasigntax is that a tuple
always contains one attribute value per attribute and asuwtri¢ is impossible to
have two values of the same attribute in the same patterntefirsit of this type for
instance would not be able to capture the fact that a direcobe related to many
films. This is something that an MCCS pattern naturally cagstuHowever, itemsets
on the join table can still capture co-occurrences of aitelvalues that belong to
different attributes.

On the other hand, the support, measured as the ratio offlestof the join table
that contain an itemset, does not have a clear meaning dsutdtvalues are repli-
cated due to the join operation. A different approach isnake Smurfig (Goethals
et al 2010) where the support is measured with respect ty ¢éable, as the relative
number of keys that the items correspond to.

Some previous methods have extended the notion of formalegas (or closed
itemsets and their supporting transactions) by considenniity types that arg-ary
related (Ji et al 2006; Jaschke et al 2008; Trabelsi et a2R6dn-ary related with
n > 2 (Cerf et al 2009; Voutsadakis 2002). They define a patterrafid if all the
entities it contains are related in the data, which is simidaour notion of complete-
ness. They also define a pattern as closed if no addition#y ean be added to it,
which is similar to our notion of maximality. However, the imaifference between
these methods and our method is that they are designed toomaske 3-ary or-
ary relationship while our method is designed to work on imaliational data with
many binary relationships. The methods that work onofey relationship could be
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used for the problem of mining MCCSs in multi-relationalal#tthis problem was
reduced to the problem mining closed patterns fromsoaey relationship. This can
be done by considering the join of every combination of refeghips and all single
relationships in the database, resulting in a number-afy relationships that is ex-
ponential in the number of relationships in the databasehbtis for mining closed
patterns in one-ary relationship can then be applied to each of these oelstips
resulting in the same set of patterns that would be the re$alpplying RMiner to
the original problem. However, when taking this reductitbre, original structure of
the data is lost which means that the MCCSs involving difieubsets of entity
types are produced independently instead of being builrom fa smaller MCCS
containing less entity types as in the case of RMiner. Thaslte in these methods
quickly becoming prohibitively costly. We empiricallyultrate this in Sect. 7.3, with
an experiment comparing RMiner and the algorithm of Cerf é2@09).

Departing from the pattern syntax of itemsets a group ofare$esuggested min-
ing association rules of simple conjunctive queries, whioh simple forms of re-
lational algebra queries,i.e, a selection succeeded byjagtion (Jen et al 2010;
Goethals and Le Page 2008). This is an interesting pattetasgs relational queries
are in general more expressive than itemsets. However titerpa are still linked
to a support measure which is computed on the join tablerdstiagly, the work
of Jen et al (2010), uses the functional dependencies oftthieudes to prove anti-
monotonicity of the support for this pattern syntax which iway to make use of the
relational data structure rather than just the join table.

Warmr (Dehaspe and Toivonen 1999) and Farmer (Nijssen akd?R03) are
methods based on ILP. The patterns have the form of logis nulgich can be re-
garded as local models of the database. The goal of thes@dsdthto mine for the
most frequent rules. The support is defined as the relativebeu of key values of
one target table that satisfy the rule. Therefore the maneige:the rule the higher its
support will be. This type of pattern syntax is very expressind can capture the re-
lational structure well. However, the objective of thesetmds (frequent rules about
the data) is different than ours (interesting patterns ebceurring attributes). Fi-
nally the interestingness measure we propose in Sec. 4 tharapplied on Warmr
and Farmer patterns and evaluating the interestingnesssokind of patterns is a
challenge.

Within the ILP framework the work in (Garriga et al 2007) defiiclosure oper-
ations for patterns of the syntax of Warmr and Farmer andqmeg an extension of
the LCM algorithm (Uno et al 2004a), originally proposedfi@quent closed itemset
mining, for mining frequent rules. Although the purpose af@sure operator in this
context is the same as in the context of MCCSs, i.e., extghitterns with valid sets
of elements to reduce the search space, the semantics f@rewtf In the ILP case,
rules are extended with atoms such that the extended ruddis§isd by the same set
of terms in the data, whereas in our case a CCS is extendedwwidimtity such that
the extended CCS has the same set of compatible entities.

Warmr, Farmer, and Smurfig are all based on the notion of armiegupattern,
and they directly depend on a support notion. Measuring tippart with respect
to one or a set of target tables, makes the results difficufiterpret and therefore
introduces usability issues. The potential user will haveriderstand what exactly
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it means for a recurring pattern to be frequent with respeet tertain target table.
Additionally, these techniques are likely to suffer frone ttame problems as other
frequent pattern mining techniques, in particular the faat support is usually only
weakly related to interestingness.

RDB-Krimp (Koopman and Siebes 2009) is a method for minitaftienal databases
which is related to ours in that it also uses information th&o ideas for the assess-
ment of patterns. It uses the pattern syntax of Farmer (®hjssd Kok 2003) but
considers just patterns of depth two (patterns of a tardpe @nd all the tables re-
lated to it with a foreign key). The most frequent patternghis kind are mined for
every table of the database as a target table and then RDBpKimds the most char-
acteristic patterns among them using the MDL principle. fdoeis of this method is
on the total description length of the database joined vhithgatterns, and patterns
are deemed more interesting if they are better at compg#smdescription length.
We instead deem patterns more interesting if they descut@ising aspects of the
database in a concise way, which we argue makes our resuksreievant to an end-
user. Finally RDB-Krimp relies on heuristic search to find tiptimal set of patterns
that best compress the database which is not the case forethodithat searches
exhaustively.

Arecentapproach which acknowledges the usability isstigesupport as well,
is presented in (Nijssen et al 2011). The task of mining rreltitional databases is
formalised as a constraint programming problem where auc@tipn of constraints
is defined and a general constraint programming solver stasfind sets of entiti€s
satisfying these constraints. The syntactic constraied s this paper is defined on
one relationship and enforces the corresponding entiiésrin a biclique. A con-
junction of biclique constraints for all the relationshipshe database corresponds to
the syntax of CCSs. Size constraints are defined as welhéominimum/maximum
number of entities required, which are of the same natureeaminimum coverage
constraint we define in Sect. 4. Finally, a maximality coaistr on an entity type,
with respect to the rest of the constraints is defined. Algtoa conjunction of such
constraints with respect to every entity type could be useatidition to the biclique
constraint to find MCCSs, a useful definition of closure tledes into account the
relational setting to increase the efficiency of finding speltterns is not given. In
fact it is mentioned that multi-relational closed patterimimg is possible by apply-
ing the maximality constraint to one or more of the entityeggpHowever, while
maximal patterns (MCCSs) correspond to closed ones wheprdidem is reduced
to itemset mining (see Sect. 2), this relation is uncleattiercase of more than one
relationships (see Sect. 3).

Finally, our method might seem related to that in (Zaki et @02 on mining
clusters of attributes in an attribute-value table. Ind#wes proposed approach of
this paper is based on modelling an attribute-value table Aspartite graph and
mining maximal cliques in this graph. However the modellimgifferent to ours as
all attributes of the table can be connected to each othesrems according to our
modelling of a single table, there are relationship typdg batween every attribute

3 Please note that by entities and entity types here, we #ictediér to our notion of the terms. The
same notions are defined as objects and entities respgati@lijssen et al 2011).
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and the primary key attribute. Also from an algorithmic gaifview, the proposed
algorithm of this paper for mining maximal K-cliques is bdsen enumerating all
K-cliques without taking advantage of any notion of closure

5.2 Mining graphs and networks

Mining all maximal cliques of a graph is an old problem (Brord&erbosch 1973)
for which many algorithms exist (Pardalos and Xue 1994)eR#yg, remarkably ef-
ficient methods for enumerating directly only the maximadjwés have been pro-
posed. Notably Makino and Uno (2004) introduced a methodrfakimal clique
enumeration with time and space complexities comparabléBMThe time delay
is O(M(n)) whereM (n) is the time complexity for multiplying twax x n matri-
ces which can be done if(n?376) time. The space complexity of this algorithm
is O(n?) which corresponds to storing the twiox n matrices being multiplied, i.e.
equal to the space complexity of RMirfeMethods for (maximal) clique enumera-
tion could therefore be worth investigating for use in mMCCSs.

Clearly, MCCSs are not cliques in the graph representafitirecdatabase, given
that some edges are forbidden (between entities of the sqraeand between entities
of types that are not related). However, one can try to retheproblem of mining all
MCCSs to the problem of mining of all (maximal) cliques by adpedges wherever
these are forbidden. Let us call the resulting graph theliauxigraph (note that this
graph is typically going to be dense). It is straightforwrdee that in the auxiliary
graph each MCCS is indeed a clique, such that a clique entimeraethod applied
to the auxiliary graph would indeed also enumerate all MCi@$ise database.

However, this reduction is inefficient, as can be understonodt by means of an
example. Consider a multi-relational database with fivétyetypes F; ... E5 and
the following relationship typed?;s, Ros, R34, R45. Let us assume that there arg
MCCSs with entities from type&; and E5 only, andn, MCCSs with entities from
typesE, andEs only. Now, note that in the auxiliary graph all entities gb&F; and
E5 are connected to all entities of ty@ge and E5. This means that the union of any
MCCS over typedr; and F» with an MCCS of typels, and E5 will be a (maximal)
clique in the auxiliary graph. Thus, these+n, MCCSs give rise ta; x ny maximal
cligues, a quadratic blowup. In general the blowup is poigia: depending on the
number of entity types and the relationships between thamexémal clique in the
auxiliary graph may be the union of a larger number of MCCSs.

Another well known graph mining task which could be seen éated is fre-
guent subgraph mining (Yan and Han 2002; Kuramochi and Ka3@01). Given a
database of many graphs and a support threshold, the goabofent subgraph min-
ing is to mine all subgraphs that occur more often than thpauphreshold suggests.

4 Note that practically, the quadratic space complexity ofif results from multiplying a linear
space complexity with the maximal search tree depth, whishye will show in Sect. 7.3, is practically
a small constant. Also, as we discussed in Sect. 3.5, théigalkattme delay of RMiner depends on the
density of the data set and can be optimised in practice bpgagarticular implementation choices. In
Sect. 7.3 we show experiments where the total running tirliegar in log scale with respect to the input
size when constraints are used. Thus, even thougtihéueeticalcomplexities of Makino and Uno (2004)
and RMiner are comparable, RMiner probably scales betteractice
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A closed subgraph in this setting is a subgraph for which ro@@r supergraph with
the same support exists in the database (Yan and Han 2008task of frequent
subgraph mining is therefore very different to the one psagbin our paper where
the goal is to mine maximal complete connected componermtser -partite graph.

Recent work from the networks community has focused on méswehich con-
tain different types of nodes or interactions. Althoughstheetworks are mostly re-
ferred to as heterogeneous networks (Sun et al 2009; Ji €114, 2011; Sun et al
2012b,a; Tang et al 2012; Maruhashi et al 2011), this nams doksignify a single
structure. In fact, different structures under this namestgeen studied and different
mining tasks on them considered.

A group of papers consider heterogeneous information ré&satbat correspond
to a star entity-relationship schema. The mining tasks llhate been proposed for
this type of networks are clustering, classification or Iprediction. Two different
clustering tasks have been proposed: clustering of thesthde correspond to the
middle entity using the nodes of the other entities as feat{Bun et al 2009), or
clustering of any entity (target entity) using the nodesraf another entity, connected
through a path to the target entity, as features (Sun et @t20Eor the classification
task it is assumed that certain subgraphs of the network &gazaticular class tag.
Then the goal is to find the confidence with which untagged sbeéng to a certain
class using the number of edges of different relationstppsythat the node has with
every class (Ji et al 2010). The same framework is used in gw@tibn with ranking,
where nodes within a class are ranked based on their impeartamd this is used to
give different weights to the different edges of unlabeltedies with the class. As
more and more nodes are assigned to classes the rankingatedpdi et al 2011).
The link prediction task corresponds to predicting linksadérget relationship type
based on topological features of the network (Sun et al 20B2iace our method is
an unsupervised one and does not do any prediction, it idyrre$dted to clustering.
However the clustering methods proposed do not employ théplar structure of
the network but to define which is the entity to be clusterathwhat are the features
used for clustering. After this, clustering algorithms torstructured data are used.
This approach also results in one-dimensional clustestedl, our method uses the
K -partite structure of the network to produce multi-dimensil clusters of nodes.

A different type of heterogeneous network where there istgpe of node and
multiple types of edges/interactions, is considered im{et al 2012). The proposed
method finds cross-dimensional communities of nodes bgiatig topological fea-
tures from the different dimensions. The topological feasucorrespond to the top
eigenvectors of the modularity matrix and the cross-diriterad communities are
found by maximising the summation of all the pair-wise ctatiens of the features.
Although this task is very different to the one consideredun paper, it is an inter-
esting approach as the communities found contain infoondtom all the different
dimensions of the data.

Finally, tensors are considered as heterogeneous netwo(kéaruhashi et al
2011), where a tensor decomposition method is employedrie patterns of entities
of one dimension that share one entity from each of the ofinegrksions or patterns
that correspond to bi-partite graphs in a two dimensionee gf the tensor.
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Title |—O—| Genre

Fig. 5 Entity-Relationship diagram of thendb-3ent-1yeaandimdb-3ent-10yeardatasets.

Fig. 6 Entity-Relationship diagram of thablp dataset.

5.3 Other work

An approach for assessing the statistical significance latio@al (SQL) queries
based on randomisations of different tables is propose®jalg et al 2010). Al-
though this approach was not intended to propose a methothtosuch patterns it
provides an insight towards making relational pattern$ul$e the user.

Finally the idea of representing relational databases ashgrhas also appeared
in the Database research community with the Graph Databaskels] but the focus
was of course representation and querying which led to monegptex structures
(directed graphs often representing a hierarchical straatf entity types) (Angles
and Gutierrez 2008).

6 Qualitative Evaluation

In this section we show and discuss the top ranked pattemg afiethod on different
real world datasets in order to highlight how our method isfuisin different real

world scenarios. Moreover we qualitatively compare theégoas mined by RMiner
with those of two previous methods (namely Farmer (Nijssed Kok 2003) and
Smurfig (Goethals et al 2010)) on the same dataset.

6.1 Real-world datasets

We did experiments on several real world datasets, theyER#tationship (E-R) di-
agrams of which are shown in Figures 5, 6 and 7 and their stat&re summarised
in Table 1. We produced two different views of the IMDB dataé one containing
the titles, genres and directors of the films produced in Zohfb-3ent-1lyegrand
one containing the titles, genres and directors of films pced in the years 2001-
2010 {mdb-3ent-10yeajs To produce thémdb-3ent-10yeardataset we neglected

5 Seehttp://ww. i mdb. comf
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MN

Fig. 7 Entity-Relationship diagram of tretudentdidataset.

Table 1 Database details. For every data set we show the total nuaflmntities and the relationship
density for every relationship type, which correspondshtoriumber of relationship instances divided by
the number of entities involved in this relationship type.

Num. of Rel. Rel. Rel. Rel. Rel. Rel.
Entities density density density density density density
Type 1 Type 2 Type3 Typed Type5 Typeb6
imdb-3ent-lyear 30,130 7 x 10~° 0.073
imdb-3ent-10years 104,291 2.5 x 10~5 0.058
dblp 15510 4x10% 4x10-%* 0.002 0.031 0.031
studentdb 401 0.016 0.143 0.333 0.333 0.109 0.011

all “Short” films. From the Dblp bibliography databa%eve created theblp dataset
which only contains papers with citation information (49#8pers). Please note that
not all papers contained their citations in the data we doaahd from Dblp. Fi-
nally we also used the student database of the Computercgcitapartment of the
University of Antwerp (Goethals et al 2010) (callstidentdbn this paper).

6.2 Patterns of RMiner

Table 2 Output size and computation times of RMiner and RMiieim.

Constraints Num. of  Time(sec) Time(sec)
per entity type  Patterns RMiner RMinédm
imdb-3ent-10years (1,1,2) 54,672 577 2,280
dblp (0,0,0,0) 26,377 3,609 39,614
studentdb (1,1,1,1,1,1,1) 155 1 2

Table 2 summarizes all the different experiments we did, Hywéng the con-
straints we used, as well as the computation time and ouipaifar each of them.
A preliminary version of RMiner, which was not applying th&ide and conquer

6 Seehttp://ww.informatik.uni-trier.de/~Iey/db/
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Fig. 8 The15t most interesting MCCS pattern in thedb-3ent-10yearsataset, as a graph. It represents
a set of film titles that are all directed by the same two dimecaind are of genre “Thiller”.

fixpoint listing framework but was rather an ad hoc algorithat taking advantage
of a full closure, was presented in (Spyropoulou and De BiEl20We extensively
compare RMiner with this algorithm, which we refer to as Rbtincdm, in Sect. 7.
However, for completeness, we report computation times&ih the RMiner and
RMiner_icdm, here as well. We now analyse the top ranked patterngeiry elataset.

IMDB DatabaseWe run RMiner on thémdb-3ent-10yeardataset with constraints
of at least one entity per entity type. The results are shoviigs. 8, 9 and 10 which
represent tha**, 2”¢ and3"¢ most interesting patterns respectively, ranked by the
interestingness measure presented in Section 4. Theywalltha directors (pairs of
brothers) and six or seven films which makes them interestintiney carry a lot of
information (number of edges), given that on average indhtaset a director directs
1.51 films and a film has 1.04 directors, and this informatioroinveyed in a concise
way (number of nodes). The? pattern (Fig. 8), contains the genre “Thiller” which
is two times less probable to be connected to a film than teaj¢inre “Comedy” and
therefore it ranks higher than the other two because it amnitaore improbable edges
given the prior information of the user. TB&? pattern (Fig. 9) ranks higher than the
374 (Fig. 10) because it contains more edges and therefore genvere information.
The fact that the directors involved in all three of thesdqras have directed very
few films in the dataset makes the edges of the patterns vgmolmable under the
user’s prior information and leaves the pattern involving tCoen brothers” and all
their “Comedy” films in the years 2001-2010 in the 22nd place.
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Fig. 9 The2"? most interesting MCCS pattern in tiradb-3ent-10yearsataset, as a graph. It represents
a set of film titles that are all directed by the same two diecand are of genre “Comedy”.

title."Fever
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title."Hall
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director."Farrelly, .
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. title."The
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director."Farrelly, Kid"
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title."The
Three
Stooges”

title."Walter
the Farting
Dog"

Fig. 10 The3"? most interesting MCCS pattern in tiradb-3ent-10yeardataset, as a graph. It represents
a set of film titles that are all directed by the same two dinecand are of genre “Comedy”.
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Fig. 11 The 15t most interesting MCCS pattern in tliblp dataset, as a graph. It represents a group of

authors, a group of papers they published and a group of péparare self citations, indicating that these
are papers these authors published on the same idea.
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Fig. 12 The6" most interesting MCCS pattern in tdelp dataset, as a graph. It represents a group of papers allrofditieg another group of papers, indicating that they
are all papers on the same subject.
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Fig. 13 The 8" most interesting MCCS pattern in thiblp dataset, as a graph. It represents a group
of authors, a group of papers they published and a group @frpabat are self citations. All papers are
published in the same conference. This pattern indicattsliese are papers that these authors published
on the same idea and at the same conference.

DBLP DatabaseThe results of this dataset are shown in Figs. 11, 12 and 13. To
highlight the generality of our method we show the 1st, 6td 8th most interest-
ing patterns as they are quite diverse in the kind of inforomethey represent. The
1% pattern ranks high in terms of interestingness as it conadgs of information
(number of edges which are improbable under the user’s ifiormation) in a con-
cise way (number of nodes). The edges involved in this patter improbable if one
considers that the authors involved have written 7 and 1&nsagspectively in this
dataset and that the cited papers involved are both citedlyy/cciting papers in this
dataset. Thé'" pattern, although it is very big in the number of nodes it sahigh

in terms of interestingness as the amount of informationiitveys makes up for it.
More specifically the cited papers in the pattern get citeddyiting papers when
the average in the dataset is 6.2. Finally 8% pattern contains a lot fewer edges
than the other two patterns (for example it contains halfaim®unt of edges of the
1%t one although it has only one node less) however, it still sdrigh as the edges it
contains are very improbable give the prior informationtef tiser.

Student Database datas&he top-ranked MCCSs on thetudentdbdatabase are
shown in Figs. 14 and 15. Since the first two patterns weretstrally similar (al-
though they convey non-redundant information), Figs. 1@ 5% show only the st
and the3"? most interesting patterns. Thé' ranked pattern (Fig. 14) is interesting
as it conveys a lot of information (number of edges) in a cemevay (number of
nodes). The" pattern (Fig. 15), is less interesting than tfé as it contains just 1



Interesting Pattern Mining in Multi-Relational Data 31
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Fig. 14 The first most interesting MCCS pattern in thidentdbdataset, as a graph. It conveys infor-

mation about a set of 67 students, the program, contractrdbk they are following, two courses they

attend, the professor teaching these courses and thedeonm they are taught in. Note that the number
of student nodes is too large to show here, so we collapsed dhéo one node labelled with “...".

program."BINF"
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p Mathematics"
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Fig. 15 The third most interesting MCCS patterns in 8tadentdbdataset, as a graph. It conveys infor-
mation about a set of 67 students, their program, contradttrack, as well as one course, the professor
teaching it and the lecture room. Note that the number ofestudodes is too large to show here, so we

collapsed them onto one node labelled with an “...".

node less while it explains 67 fewer edges and contains ome coairse room which
appears more frequently in the database.
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(genre=Action) (name="Appleford, Russell") (.title="40 Years")
(genre=Action) (hame="Wagner, Ben") (title="6:00")
(genre=Action) (name="Gao, Fawn") (title="9 AM")

Fig. 16 Three of the most frequent patterns of Smurfigradb-3ent-lyearslatabase.

director(VONO), directs(VONO,V1NO), genre(V1NO,Drama)
director(VONO), directs(VONO,V1NO), genre(V1NO,Short)
director(VONO), directs(VONO,V1NO), genre(V1NO,Comedy)

Fig. 17 Top three most frequent patterns of Farmeirodb-3ent-lyearslatabase.

6.3 Comparison with other methods

Here we qualitatively compare with the results of Smurfigé®als et al 2010) and
Farmer (Nijssen and Kok 2003) on thredb-3ent-1yeadataset.

Smurfig patterndWe ran Smurfig with a support threshold of 0.001 to be as inaus
as possible. To compare with the patterns of RMiner we seddbe ones that contain
items from all the three attributes. As pointed out in Seedgh of these patterns can
contain only one attribute value per attribute. Becaush@fiature of thémdb-3ent-
lyeardataset each of them has absolute support of 1. Figure 16shoge of these
patterns. Thus, Smurfig is clearly not suited to find relaionrelational data of this
kind.

Farmer patternsWe ran Farmer with an absolute support threshold of 1. ThHeat
syntax we used had the following fordirector (X), directs(X,Y), genre(Y, g1) . ..
genre(Y, g,) and the key of the search is the atalinrector(X). Figure 17 shows
the top three most frequent of these patterns that containraé predicates. None of
these patterns contain more than one genre constants, igtiwhe expected as the
most frequent rules are bound to be the more general rulds.tNat if we found the
directors and titles that satisfy these rules, these pette@ould correspond to CCSs.
The difference between Farmer patterns and CCSs is analagde difference be-
tween itemsets and tiles. Farmer patterns correspondiMfCIGSs are expected to
be less frequent as they are more specific.

7 Quantitative Evaluation

In this section we present a quantitative evaluation of oethmd. We first show that
our interestingness measure indeed ranks high the mosestiteg patterns. Then
we present how RMiner behaves in term of computation timertficzal data of
different schemas. Finally we present a scalability stufliReliner on real-world
data of increasing number of entities.

When studying the performance of RMiner we always compate iits prede-
cessor RMineicdm (Spyropoulou and De Bie 2011). As discussed in Sect.tiBe3
patterns mined by RMiner are qualitatively different thae bnes of Farmer (Ni-
jssen and Kok 2003). Therefore a direct comparison of théopaance of the two
algorithms would not be fair, since the two tasks are verfedit.
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7.1 Evaluation of the Interestingness Measure

We investigated how different methods detect artificiabybedded MCCS patterns
of different sizes in themdb-3ent-lyeadata. More specifically, we investigated
how highly the embedded MCCS (or a larger MCCS containinigitanked by our
method using the interestingness measure we propose. Tpacewith Farmer we
checked the rank of the most frequent rule correspondinigisdMCCS and, allow-
ing Farmer an advantage due to the different pattern syatsxthe rank of any CCS
containing a smakubsebf the embedded predicates.

To artificially embed a pattern, we addédgenres i directors, andc titles to
the database, in such a way that each of thiegenres and directors are connected
to each of thek titles, forming a CCS. As this by itself would create an utisea
tic disjoint part of the database, we additionally addedlcam links preserving the
overall connectivity and database statistics. E.g., welaarly added links between
the existing genres and the newly added titles so as to etirirén expectation, the
total fraction of titles each of the existing genres is lidkeith stays the same. This
is done also between the existing titles and the newly addaceg, and similarly for
the directors and titles.

Table 3 shows the rank of the embedded MCCS pattern for iscrga. RMiner
ranks the embedded pattern higher as the number of nodestjtgrtgpe increases
and ranks it first when it contains more than just three nosteswing that RMiner
ranks high even relatively small patterns known to be preisethe database.

For Farmer we used the same pattern syntax as in Sec. 6.8.3abbws the rank
of the highest ranked rule including ajenrepredicates in the embedded MCCS,
as well as corresponding to a CCS containing a subset ofysbt more of the
embeddedyenre predicates. Unsurprisingly, Farmer ranks the CCS patterose
highly than the more specific and thus less frequent MCC® et However, even
the CCS patterns are ranked much lower than using RMiner.

Table 3 Rank of artificially embedded MCCS patterniindb-3ent-lyeadataset with increasing number
of nodesk per entity type.

k 2 3 4 6

RMiner Rank 103 6 1 1
Farmer Rank (MCCS) 121 502 1464 2141
Farmer Rank (CCS) 122 109 125 147

7.2 Computational Evaluation on different schemas

This subsection aims at showing how RMiner behaves on difitdEntity-Relationship
(E-R) diagrams. We also compare RMiner with its predeceRsdiner.icdm (Spy-
ropoulou and De Bie 2011). We produced random datasets lmastte three E-R
diagrams depicted in Figure 18 in the following way. For gventity type we fixed
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Fig. 18 Entity-Relationship diagrams of random datasets.

the number of entities to 500. Then for every relationshgetywe connect an entity of
one entity type with an entity of the other with varying probigy called connection
probability.

More specifically we created 10 datasets for every E-R diadrg varying the
connection probabilityn the interval[0.001, 0.01] and computed the running time of
RMiner and RMinericdm for each of the datasets without any constraints. leiggr
shows a comparison of the running time for increasingnection probabilityThe
running time of both algorithms increases exponentiallyr@sdata becomes more
dense. Moreover RMiner is only marginally faster than RMiielm in datasets with
E-R 1 and 3 and as fast in datasets with E-R 2. We argue thastHige to the fact
that random datasets are quite unstructured. This meanththaare less likely to
contain entities with shared connected entities whicheiases the number of closed
patterns that are enumerated. As we show in Table 2 and weseéllin the next
section RMiner always outperforms RMinEdm on real world datasets.
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Fig. 19 Comparison of RMiner with RMineicdm on different E-R diagrams.
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Fig. 20 Comparison of the running time of RMiner on different E-Rgtms.

Figure 20 shows a comparison of the running time of RMinerkigd21 a com-
parison of the output size for increasiognnection probabilityn datasets with dif-
ferent E-R diagrams. The output size as well as the computtine increases as the
paths connecting the entity types become longer.
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Fig. 21 Comparison of the output size of RMiner on different E-R diangs.
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Table 4 Scalability Experiment.

4

5 6
connection probability

8

RMiner RMiner_.icdm
Constraints  Num. of  Num. of Time Space Depth  Size of max Time
Entites  Patterns (sec) (Mb) MCCSs (sec)
(0,0,0) 3,291 583 5,413 5 5 2823 -
8,686 1,134 113,185 11 6 7872 -
51,203 - - - - - -
111,320 - - - - - -
514,323 - - - - - -
(1,1,1) 3,291 491 1.65 5 5 100 20
8,686 980 12 10 6 174 215
51,203 7621 610 51 6 360 5,471
111,320 32,213 2,813 109 8 632 73,944
514,323 253,148 34,758 477 8 632 96,738
(2,2,2) 3,291 3 0.18 5 4 10 549
8,686 23 1.35 10 4 11 8,562
51,203 125 30 50 6 80 -
111,320 420 181 107 7 148 -
514,323 1286 2598 461 7 179 -
(3,3,3) 3,291 0 0.14 4 2 0 1010
8,686 0 1.02 10 2 0 21,938
51,203 0 18 50 2 0 -
111,320 1 121 107 4 11 -
514,323 5 1506 461 7 11 -

7.3 Computational scalability evaluation

The purpose of this subsection is to show how RMiner scal#singreasing number
of entities in the dataset and using different constrainterder to take full advan-
tage of the closure operator we did this scalability studyread world datasets of
increasing size corresponding to the schema of Fig. 5 ofNti2B Database. More
specifically we took snapshots corresponding to 1 year, syd8 years, 40 years
and 100 years of films starting from year 1910. Table 4 shoestimber of entities
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corresponding to each of these snapshots as well as numipattefns, the time,
memory, maximum depth of the search tree and size of the mamiotique we get
from running RMiner on each of these datasets. It also shbe/sunning time of
RMiner.icdm on each of these datasets. The "-"s in the table meanhtbaespective
algorithm did not finish running in 2 days.

From Table 4 we can see that when not using any constrainesni¢y type the
running time of RMiner increases rapidly with the number ofitees, while when
using the constraints it appears to increase linearly irstiade, with a slope approx-
imately equal to 2. When using constraints of even one epétentity type we can
run RMiner in almost the whole of IMDB Database (100 years lofid) in a few
hours. This time reduces to a few minutes when using conssref at least two enti-
ties per entity type. This is a very useful feature of RMingtraly relational patterns
are the ones that involve more than two entity types. Thetfadtthe running time
scales poorly when not using any constraints is expectegk dime task is strictly
harder than running frequent title mining on each of theti@tehips separately, with
a support threshold of zero.

The space used at run time increases linearly with the nuwfentities irre-
spective of the constraints. This is due to the fact that fiees complexity of the
algorithm depends on the maximum depth of the search treeSse. 3.5) which, in
these experiments, is a small constant. Even when incigg#tsininput size by two
orders of magnitude the maximum search tree depth onlyaseseby approximately
factor of 3 in the worst case, i.e, when the constraints aB83R Also, the fact that the
maximum depth of the search tree is never greater than sexems that the number
of closed CCSs is only up to a small factor larger than the rerrabMCCSs.

Table 4 also shows the size of the maximum MCCS which getslemes the
constraints increase. However, the size of the maximum M@&IS& corresponds to
the maximum depth of the search tree if the closure operatsnot used. Comparing
this with the maximum depth of the search tree of RMiner, weget an idea about
the effectiveness of the closure operator or the compatityeoclosed CCSs. As we
can see in Table 4, the maximum depth of the search tree of &Nbrup to three
orders of magnitude smaller than the size of the maximum MCCS

Comparing RMiner with RMineficdm we see that RMiner always outperforms
RMiner.icdm by up to three orders of magnitude, like in the case obtramts of
three entities per entity type and the dataset of 8,686 &stit

Finally, in Sect. 5.1 we described how the problem of mininG@&6s could be
reduced to the problem of mining closed patternsiiary relations by taking the
joins of all allowed combinations of relationships and mih-ary closed patterns
on each one of them. Here we show empirically that this rednctoesn’t scale for
large datasets, by comparing RMiner with DataPeeler (Gaif2009). More specif-
ically, we compared the running time of RMiner for the cas€lgf,1) constraints
with that of DataPeeler on the join of all relationships (sbbwn in the Table 4).
DataPeeler run to completion for the first three datasets mihning times 2.36s,
22.41s, 15,492.6s and after this point it did not run to catiph within 2 days.
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7.4 Practical guidance on using RMiner

In Sect. 3.5 we analysed the complexity of the delay betweedyzing two CCSs
and found it to be cubic to the input size. We also argued thpatactice the delay is

a product of the input size and a factor related to the deo$itye dataset. However,
the total running time depends on the output size which cavebg large in some
cases. As an example, consider the simplest databaseringtaivo entity types,
E1 and E» and a binary relationshif®,» between them. Let's assume that each of
the entity types contains n entities, and that the binargtigship is as follows:
Ri2 = {{ei,e;} : i # j}. For this construction, each of ti# subsets ofF;
together with its neighbors iivs forms a closed CCS. This is the worst case for
this particular database where the number of closed CCS$istlifas MCCSs) grows
exponentially to the input size.

However, as with all local pattern mining methods, when idgalvith data sets
where the actual relationships can be arbitrary, the sizeebutput is not known
until the algorithm runs. Nevertheless, based on our eggiscalability analysis
(Sect. 7.2 and 7.3), we list a few factors that the outputaimbas a result the total
running time, depend on:

— The input size (number of entities): the output size scatdgrnomially to the
input size (Table 4).

— The density of the data: the output size of RMiner scales eeptially to the data
density (Fig. 21).

— The database schema: The longer paths the schema contalaggr the output
size (Fig. 21).

Given the uncertainty about the output size, we recommesreasing it progres-
sively by making use of the constraints. More specificallye @ould start running
RMiner using high values for the constraints (i.e., prodg@ small output) and con-
tinue by reducing them until the point when RMiner still rumighin an acceptable
amount of time.

8 Discussion and Future Work

Multi-relational data mining is a very promising field asuiggests mining for more
complex patterns than we were able to with frequent itemésinignor frequent sub-
graph mining. A main challenge in this field is the definitidnao appropriate and
intuitive pattern syntax in such complex data, and we feal the notion of a Com-
plete Connected Subset (CCS) as proposed in the current iggm@mising due to
its conceptual simplicity, while fully honouring the refatal nature of the data. We
further confirmed the promise of CCSs as a pattern syntax wiaging an efficient
algorithm for mining all maximal CCSs, and by validating tdeas on a number of
artificial and real-life databases.

We see several opportunities for further research. On tharigthmic side, other
approaches for exploring set systems can be worth invéistigas an example, the
algorithm for enumerating all maximal independent setsnohalependence system
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proposed in (Lawler et al 1980) seems potentially releviduhis algorithm can be
adapted for the enumeration of all maximal sets in the ietgisn of an independence
and a strongly accessible system, then it would be possildéectly enumerate all
MCCSs. A different algorithmic direction could be taken tieoconsidered a dif-
ferent compression of the CCS in the same lines as for exathelaon-derivable
itemsets (Calders and Goethals 2007). For applying thestiol¢he case of CCSs, the
semantics of this reduction should be investigated andtatdaialgorithm should be
developed.

In terms of pattern syntax, MCCSs as defined in this papewalldy for binary
relationships between the entity types. However, in pcattelational databases re-
lationships can be of any arity. A new pattern syntax consgideelationships of any
arity, would add to the generality of our method. Furtherenthie definition of item-
sets and the respective mining algorithms have been exdendarder to be fault-
tolerant in the case of noisy data (Poernomo and Gopallaisi2009; Gupta et al
2008). This is important when dealing with real world datpexially experimental,
and would constitute a useful extension of our work.

Finally the maximum entropy framework used in this paperrfardelling the
subjective interestingness of patterns allows for incaaing this work into an itera-
tive data mining framework where the interestingness ofteepais quantified based
on the patterns that the user has already seen (De Bie 2011a).
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