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Abstract Mining patterns from multi-relational data is a problem attracting increas-
ing interest within the data mining community. Traditionaldata mining approaches
are typically developed for single-table databases, and are not directly applicable to
multi-relational data. Nevertheless, multi-relational data is a more truthful and there-
fore often also a more powerful representation of reality. Mining patterns of a suitably
expressive syntax directly from this representation, is thus a research problem of great
importance.

In this paper we introduce a novel approach to mining patterns in multi-relational
data. We propose a new syntax for multi-relational patternsas complete connected
subsets of database entities. We show how this pattern syntax is generally applicable
to multi-relational data, while it reduces to well-known tiles (Geerts et al 2004) when
the data is a simple binary or attribute-value table. We propose RMiner, a simple yet
practically efficient divide and conquer algorithm to mine such patterns which is an
instantiation of an algorithmic framework for efficiently enumerating all fixed points
of a suitable closure operator (Boley et al 2010). We show howthe interestingness
of patterns of the proposed syntax can conveniently be quantified using a general
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framework for quantifying subjective interestingness of patterns (De Bie 2011b). Fi-
nally, we illustrate the usefulness and the general applicability of our approach by
discussing results on real-world and synthetic databases.

Keywords Multi-relational data mining· Pattern Mining· Interestingness measures·
Maximum Entropy modelling· K-partite graphs

1 Introduction

Since the formalization of frequent itemset mining and association rule mining (Agrawal
and Srikant 1994), the focus of pattern mining research has mostly been on mining
frequent patterns in single-table databases (Srikant and Agrawal 1996; Zaki 2000;
Uno et al 2004a; Zaki and Hsiao 2005) or graphs (Yan and Han 2002; Kuramochi
and Karypis 2001). However, many datasets are inherently multi-relational and the
information systems that manage them rely on multi-relational databases (MRDs).
This imposes the need for exploring more complex patterns and corresponding data
mining techniques. Application examples for multi-relational data mining could be
mining patterns relating transactions, products and characteristics of products, in a
sales database, or in a social network context, patterns relating authors with papers
(co-authorship) as well as papers between each other (citations).

The key challenge in multi-relational data mining is the definition of a pattern
type that is adequately expressive to capture the structurein the data, while it is easy
to interpret. While Inductive Logic Programming approaches for multi-relational data
make use of a very expressive pattern syntax (Dehaspe and Toivonen 1999; Nijssen
and Kok 2003; Koopman and Siebes 2009), methods that work directly on the data
instances have focused on transporting ideas from frequentitemset mining to the re-
lational setting. The most common strategy is to first take the full join of all the tables
of the MRD, after which standard itemset mining methods can be applied (Ng et al
2002; Koopman and Siebes 2008; Goethals et al 2010). However, in flattening the
MRD in this way important structural information is inevitably lost. Finally, all pre-
vious approaches rely on transferring the notions ofrecurring patternandsupportin
the multi-relational setting either by measuring the support with respect to the entries
of the join table (Ng et al 2002; Koopman and Siebes 2008) or with respect to just
one table or entity in the database (Goethals et al 2010; Dehaspe and Toivonen 1999;
Nijssen and Kok 2003; Koopman and Siebes 2009). We argue thatthis complicates
the interpretation of the results, as it is not clear what it means for a multi-relational
pattern to be frequent with respect to the join table or just one table (See Sec. 5 for a
more detailed discussion.)

On top of these conceptual problems, most existing methods for mining MRDs
also suffer from usability problems: the returned set of patterns is often overwhelm-
ingly large and redundant, or subjectively not very interesting. Fortunately, these
problems have recently been addressed by the pattern miningresearch community,
albeit in simpler settings (mostly itemsets in binary databases). This includes the def-
inition of new objective interestingness measures with various properties (see Geng
and Hamilton (2006); Kontonasios et al (2012) for an overview), as well as the defi-
nition of general schemes to formalize subjective interestingness (Gionis et al 2007;
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Hanhijarvi et al 2009; De Bie et al 2010; De Bie 2011b,a). Another related devel-
opment, mainly aimed at reducing redundancies, is the focuson evaluating interest-
ingness of pattern sets, instead of individual patterns (Siebes et al 2006; De Raedt
and Zimmermann 2007). To improve multi-relational data mining methods, some of
these ideas should be adopted.

Here we contribute on both these fronts: the conceptualization and search for pat-
terns in MRDs, and the quantification of their interestingness. In particular, in Sec. 2
we propose Complete Connected Subsets, a new type of patternsyntax in MRDs
that captures the structural information of an MRD and does not rely on the con-
cept of support, thus avoiding some of the pitfalls in earlier work on this topic. We
show that this type of pattern iseasy to interpret, it is generally applicableto MRDs,
while in simple settings itsubsumes itemsets as a special case(or more accurately,
tiles (Geerts et al 2004)). We further propose RMiner, asimple, yet practically ef-
ficient algorithm to mine all maximal Complete Connected Subsets (Sec. 3). The
algorithm is an instantiation of a general divide and conquer enumeration frame-
work for mining closed sets of restricted pattern languages(Boley et al 2010). We
also show that RMiner can easily integrate further constraints that preserve the struc-
tural properties of the search space. We exploit this by providing a particularly useful
minimum-coverage constraint that substantially improvesthe computation time. In
Sec. 4 we show that the proposed pattern syntax lends itself well to formalizing the
subjective interestingness of patterns, subject to certain prior knowledge on the data.
In a similar way as De Bie (2011b) has done for itemsets in binary databases, this
approach guarantees the interestingness of the returned patterns in a well-defined set-
ting. We discuss related work in Sec. 5. In Sec. 6 we show results on real-world data
and qualitatively compare our pattern syntax to other multi-relational pattern syn-
taxes. Finally, in Sec. 7 we show an evaluation of the interestingness measure, as
well as a computational evaluation of the mining algorithm on synthetic datasets.

2 Multi-relational data and patterns

We first formalize multi-relational databases as considered in this paper. In an abstract
manner this formalization is reminiscent of the Entity-Relationship (ER) model as ex-
plained in Elmasri and Navathe (2006). Then we show how an MRDas we formalise
it, is uniquely represented as aK-partite graph. Finally, we move on to defining the
proposed pattern syntax.

Multi-relational database (MRD)We formalize arelational databaseas a tupleD =
(E, t,R, R) whereE is a finite set ofentitiesthat is partitioned intok entity types
by a mappingt : E → {1, . . . , k}, i.e.,E = E1

.
∪ . . .

.
∪ Ek with Ei = {e ∈

E | t(e) = i}. Moreover,R ⊆ {{i, j} | i, j ∈ {1, . . . , k}, i 6= j} is a set of
relationship typessuch that for each{i, j} ∈ R there is a binary relationshipR{i,j} ⊆
{{ei, ej} | ei ∈ Ei, ej ∈ Ej}. The setR then is the union of all these relationships,
i.e.,R =

⋃

{i,j}∈R R{i,j}. Relationship types can be many-to-many, one-to-many, or
one-to-one, depending on how many relationships the entities of either entity types
can participate in. Note here that the fact that we do not allow relationship types
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between an entity type and itself is not restrictive as we canmodel this as having two
copies of the same entity type and a relationship type between them.

Example 1Let us consider a toy example of a movie database, with ‘year’, ‘title’, and
‘genre’ as entity types, shown at the left hand side of Fig. 1.There is a relationship
type between ‘year’ and ‘title’, specifying the year of release of the movie title, and
between ‘title’ and ‘genre’, specifying the genres of a movie title. The first of these
relationship types is a one-to-many relationship type, while the second is a many-to-
many relationship type.

Remark 1 (What about attributes?)In an ER model, an entity can have attributes
associated to it. Our formalism is different in that each attribute is treated as an entity
type of its own. Associating attribute values with the entity they correspond to is
done by making use of a one-to-many relationship type between the entity type of
the attribute and the entity (Elmasri and Navathe 2006). E.g., in the toy example
considered before, ‘year’ and ‘title’ would typically be modelled as attributes of the
‘movie’ entity. However, we model them as separate entities, with a relationship type
between them. Note also that the ‘title’ is used to representthe entity ‘movie’ as they
are one-to-one related. While this approach sacrifices somedata modelling freedom,
it allows a unified treatment of attributes and entities. This is desirable, as in the ER
model the distinction between attributes and entities is often ambiguous, while we
wish our methods to be independent of such modelling choices.

A graph representation of an MRDThe MRDs resulting from our definition, can
be represented asK-partite graphs. A graph is calledK-partite if its nodes can be
partitioned into kblockssuch that there are no edges between the nodes of the same
block. In the representation of an MRD as aK-partite graph, there is a node for each
entitye ∈ E in the MRD, and an edge between two entitiesek andel if {ek, el} ∈ R.
We say that nodes representing entities of the same type are of the same node type,
and similarly we say that edges representing relationshipsof the same type are of
the same edge type. Clearly, the resulting graph isK-partite, each block in the graph
containing nodes of the same node type. The graph representation of the toy MRD
described in Ex.1 is shown at the right hand side of Fig. 1.

The pattern syntaxThe pattern type we introduce in this paper is called Complete
Connected Subset (CCS). In what follows we are going to formally define the notion
of completenessandconnectednessfor a subset of entities, and thus define a CCS.
Definition 1 (Completeness)A setF ⊆ E is complete if for alle, e′ ∈ F with
{t(e), t(e′)} ∈ R it holds that{e, e′} ∈ R{t(e),t(e′)} .

Of course completeness alone does not suffice to have a meaningful pattern def-
inition as it allows for completely unrelated (not connected) entities. In the MRD of
Fig. 1, for example, the set{Action,2010} is complete but not connected.

Definition 2 (Connectedness)A setF ⊆ E is connected if for alle, e′ ∈ F there is
a sequencee = e1, . . . , el = e′ with {e1, . . . , el} ⊆ F such that fori ∈ {1, . . . , l−1}
it holds that{ei, ei+1} ∈ R.
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title year

T1 2010

T2 2009

T3 2010

genre

Drama

History

Action

genre title

Drama T1

Drama T2

Drama T3

History T1

History T3

Action T2

Genre

Movie

Of_genre

T1

T2

T3

Drama

History

Action

2010

2009

Fig. 1 Example of an MRD in table form (left) and in graph form (right). The entity types ‘genre’, ‘title’,
‘year’ correspond to different blocks in the graph and the entities of each entity type correspond to different
nodes. The join table ‘Ofgenre’ defines a many-to-many relationship between the entity types ‘genre’ and
‘title’ and the table ‘Movie’ defines an one-to-many relationship between entities ‘title’ and ‘year’. Two
entities are linked with an edge if they co-occur in a same tuple.

Note that a subset of size larger than one can be connected only if it contains entities
of at least two different types.

A setF ⊆ E is aComplete Connected Subset(CCS) if it satisfies both connect-
edness and completeness. Intuitively a CCS captures the co-occurrence of entities,
within and between different relationship types. In this sense, it is a generalisation of
tiles (itemsets and their supporting transactions) (Geerts et al 2004) for the case of
MRDs. In the graph representation of the MRD, this pattern type corresponds to a
K-partite clique.

As in other pattern mining tasks, the number of CCSs is typically massive even
for moderately sized databases (exponential in the number of entities). Therefore
enumerating all CCSs is impractical. To reduce the computational burden, we there-
fore opted to focus on only maximal CCSs which typically forma small subset of
all CCSs. Amaximal Complete Connected Subset(MCCS) is a CCS to which no
element can be added without violating connectedness or completeness. Since each
non-maximal CCS is (by definition) a subset of an MCCS, the setof MCCSs is a loss-
less representation of the set of CCSs. Additionally, we would argue that larger CCSs
are more likely to be of interest than smaller ones, as they carry more information
than their subset CCSs.

Example 2In the MRD of Fig. 1 the set of entities{T1, T3, Drama, History, 2010}
represents an MCCS pattern. It is maximal as none of the remaining entities can be
added without violating completeness. Looking at the graphrepresentation one can
see that this set of entities corresponds to a maximalK-partite clique. This pattern
provides the information that titles T1 and T3 are both produced in 2010 and that are
both of genre Drama and History.

MCCSs in special cases of MRDsConceptually, MCCSs are easy to grasp, and the
empirical results will further demonstate that this pattern syntax is a sensible and
intuitive one. An additional argument in support of MCCSs isthat they reduce to
well-known pattern syntaxes of well-studied forms of data.

Consider a market-basket database, containing two entity types: items and trans-
actions. There is one relationship type representing the fact that an item was bought
in a transaction. An MCCS is a maximal tile in this database (Geerts et al 2004) or
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I1 I2 I3

T1 1 1 0

T2 1 1 0

T3 0 1 0

T4 0 1 1

T1

T2

T3

T4

I1

I2

I3

Fig. 2 Transaction database as a bipartite graph. Transactions and items represent different blocks of the
graph and are linked with edges according to the ‘1’s of the binary matrix.

pk a b c

PK1 A1 B1 C1

PK2 A1 B1 C1

PK3 A2 B2 C2

PK1

PK2

PK3

A1

A2

B1

B2

C1

C2

Fig. 3 Attribute-value database as aK-partite graph. Attributes represent different blocks of the graph
and attribute values represent the nodes. Key and non-key attribute values are linked if they co-occur in the
same tuple of the attribute-value table.

a closed itemset with its supporting transactions (Yahia etal 2006). It is well-known
that a binary item-transaction database can be representedby means of a bipartite
graph (Zaki and Ogihara 1998), and indeed this graph is exactly the graph represen-
tation of this special case of an MRD. An MCCS in this bipartite graph is a maximal
biclique. This is depicted in Fig. 2, showing a database of three items and four trans-
actions and the corresponding bipartite graph. The set of nodes{T1, T2, I1, I2} is an
example of a maximal tile or a maximal biclique in the graph representation.

Similarly, for a single attribute-value data table the entity types in our formaliza-
tion consist of the entity type that uniquely identifies the rows of the table (typically
identified by a primary key attribute), along with an entity type for each of the (non-
key) attributes. Hence, for an attribute-value table withK − 1 (non-key) attributes,
we would haveK entity types andK − 1 relationship types between every non-key
entity type and the primary key entity type. Traditionally these tables were binarized
into a table that contained primary keys as transactions andattribute values as items,
in order to apply itemset mining (Srikant and Agrawal 1996).An MCCS in this type
of table contains a set of entities representing attribute-values and necessarily also a
set of entities corresponding to the primary keys of the table. This is equivalent to a
maximal set of attribute-values along with the supporting set of transactions (tiles) in
the binarized version of the table. Figure 3 shows an attribute-value data table with
three attributes and three transactions and the equivalentK-partite graph representa-
tion according to our formalization. Here, the set of entities{A1, PK1, PK2, B1, C1}
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is an MCCS or a maximal tile or a closed itemset with its supporting transactions in
the binarized version of this table.

We therefore showed that MCCSs correspond to closed itemsets in the reduced
case of just two entity types. This equivalence is an additional important argument in
favour of focusing on only mining MCCSs, as the set of closed frequent itemsets have
been used extensively in the past as a lossless compression of the set of all frequent
itemsets (Uno et al 2004a; Zaki and Hsiao 2002; Uno et al 2004b; Yahia et al 2006).
As a cautionary note, we wish to point out that the notion of a maximal CCS is related
to the notion of a closed itemset but not directly related to the notion of a maximal
frequent itemset (Burdick et al 2005).

3 RMiner: An algorithm to search for all MCCSs

In the previous section we defined the pattern syntax of CCSs and we argued why it is
sensible to focus on mining MCCSs only. Of course, for this choice to result in a true
efficiency gain, an algorithm to mine MCCSs should successfully avoid enumerating
the majority of CCSs that are not maximal.

To achieve this, we develop an algorithm which is an instantiation of a general
divide and conquer algorithmic framework for listing all fixpoints of an arbitrary
closure operator in a constrained search space, introducedin (Boley et al 2010; Boley
2011). This framework is used to efficiently enumerate all CCSs that are fixpoints of
a closure operator, to which we will refer asclosedCCSs. The set of closed CCSs
contains the set of all MCCSs, while it is typically a small subset of the set of all
CCSs (see Sec. 3.1 for more details).

In Sec. 3.1, we show that the fixpoint listing algorithm is indeed applicable to
the set of CCSs. We then give an overview of the algorithm and introduce the pro-
posed closure operator in Sec. 3.2. Finally, in Sec. 3.3, we define additional minimum
coverage constraints and show how they can be incorporated into the same algorith-
mic framework. These additional constraints can be used to further reduce the search
space on specific areas of interest, considerably reducing the computation times.

3.1 The applicability of the fixpoint listing algorithm

The divide-and-conquer fixpoint listing algorithm enumerates all closed sets of a clo-
sure operator from a given set system1, as long as this set system possesses a structural
property calledstrong accessibility(Boley et al 2010). Aset systemis a family of
subsetsF ⊆ P(A) over some ground setA, whereP(A) is the power set ofA. At
the end of this subsection we will show that the set of CCSs indeed forms a strongly
accessible set system, demonstrating that the fixpoint listing algorithm is applicable
for enumerating allclosedCCSs.

1 In contrast to some traditional fixpoint enumeration algorithms, as they are for instance used in the
context of Formal Concept Analysis, this divide and conquerapproach does neither assume an underlying
complete lattice nor that the fixpoint set is closed under intersection. This is important because the set
system of CCSs is not necessarily closed under intersection(due to connectivity) and two MCCSs cannot
be joined to a common supremum (due to completeness).
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A setF ∈ F is calledclosedif it is a fixpoint of some closure operatorρ : F →
F , i.e., ρ(F ) = F . An operatorρ : F → F is a closure operator if it fulfils the
following three properties (Birkhoff 1967):
– Extensivity:F ⊆ ρ(F ) for all F ∈ F ;
– Monotonicity:ρ(F ) ⊆ ρ(F ′) for all F, F ′ ∈ F with F ⊆ F ′;
– Idempotence:ρ(ρ(F )) = ρ(F ) for all F ∈ F .

The fact that a maximal CCSF ∈ F is always closed, trivially follows from
the extensivity of the closure operator and the definition ofmaximality. Indeed, ifF
cannot be extended by any other entity, it follows from extensivity and from the fact
thatρ(F ) ∈ F , thatρ(F ) = F . This means thatF is fixed under the closure operator
and thus a closed CCS.

In Sec. 3.2, we will return to the definition of the particularclosure operator used
in this paper. Before doing that, we will first define the set system of CCSs and show
that it is strongly accessible. This is a property that is required for the applicability of
the algorithmic framework from Boley et al (2010). For a databaseD = (E, t,R, R)
theset system of CCSs, is defined as

FD = {F ⊆ E | F connected∧ F complete}.

The property of strong accessibility intuitively means that for two CCSsX,Y ∈
FD with X ⊂ Y , it is possible to iteratively extendX by one element at a time, only
passing via sets from the set system and ultimately resulting in Y . Formally, for a set
systemF ⊆ P(A), whereA is the ground set, and a setF ∈ F , let us denote by
Aug(F ) = {a ∈ A | F ∪ {a} ∈ F} the set of validaugmentation elementsof F .
ThenF is calledstrongly accessible2 if for all X ⊂ Y ⊆ A with X,Y ∈ F there is
an elemente ∈ (Aug(X) \X) ∩ Y . We can now state the desired result.

Theorem 1 For all relational databasesD = (E, t,R, R), the set systemFD of
CCSs is strongly accessible.

Proof To prove this theorem, we additionally rely on the notion of an independence
system:F is anindependence systemif for all X ∈ F , for everyY ⊆ X , Y ∈ F .
The set systemFD is the intersection of the set system of connected subsets and the
set system of complete subsets. First we are going to prove that the set system of
connected subsets,F , is a strongly accessible set system. ForX,Y ∈ F , X ⊂ Y

assume that there is noe ∈ (Aug(X) \X) ∩ Y . This means that there is no element
e in Y \X such thate ∈ Aug(X) which means thatY andY \X are disconnected.
This is a contradiction sinceY ∈ F .

Next we prove that the set system of complete subsets,F ′ is an independence
system. For aX ∈ F ′ assume there is aY ⊆ X , Y 6∈ F ′. This means there exist
e, e′ ∈ Y such that{t(e), t(e′)} ∈ R and{e, e′} 6∈ R. However becauseY ⊆ X ,
e, e′ ∈ X which is a contradiction because it means thatX 6∈ F ′.

Thus, the set system of CCSsFD is an intersection of a strongly accessible set
systemF and an independence systemF ′. It can be confirmed that this intersection
is indeed strongly accessible: LetX,Y with X ⊂ Y be in both set systems. Then

2 Strongly accessible set systems generalizegreedoidssuch as, e.g., poset ideals (see Boley (2011, Sec.
3.5.2) and Korte and Lovász (1985)).
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there must be an augmentation elementy ∈ Y \ X with X ∪ {y} ∈ F , because
F is strongly accessible. The same augmentation element can also be used in the
intersectionF ∩ F ′ becauseF ′ being an independence system impliesY ⊇ (X ∪
{y}) ∈ F ′. ⊓⊔

3.2 The basic RMiner algorithm

As we have already established that the divide and conquer fixpoint listing algorith-
mic framework of Boley et al (2010) is applicable to the case of CCSs, we now give
an overview of the algorithm and define a suitable closure operator.

The general structure of this divide-and-conquer algorithm is shown in Algo-
rithm 1. The algorithm can be described in terms of the setF (an intermediate solu-
tion), the set of valid augmentation elementsAug(F ), the setB of elements already
considered as extensions toF , and a closure operatorg. In each recursive call, the
algorithm selects an elemente from the set of augmentation elements and splits the
search space into two subtrees: one subtree in which all CCSsinclude the elemente
(line 7) and another subtree in which all CCSs excludee, which is achieved by adding
it to B (line 10). Adding nodes fromAug(F ) only, ensures that every set explored is
a CCS. The fact that only closed patterns are sought is ensured in line 2, where the
expanded setF∪{e} is potentially further expanded by applying the closure operator.
The recursive call in line 7 is applied if this expansion doesnot include any elements
from B (line 4) thus avoiding duplicate solutions, and if it doesn’t correspond to a
maximal solution (lines 4-5).

As the divide and conquer fixpoint listing algorithmic framework enumerates all
closed sets, we added lines 4-5 to ensure that RMiner outputsMCCSs only, i.e. CCSs
F for which there are no augmentation elements not yet inF . Formally, this is per-
formed by checking whetherF = Aug(F ).

Algorithm 1 RMiner: List all MCCSs
RMiner (F,B)

1: Selecte ∈ Aug(F ) \ (F ∪ B)
2: F ′ = g(F ∪ {e})
3: if F ′ ∩B = ∅ then
4: if F ′ = Aug(F ′) then
5: OutputF ′

6: else
7: RMiner (F ′, B)
8: end if
9: end if

10: RMiner (F , B ∪ {e})

As defined in Sec. 3.1, the set of augmentation elementsAug(F ) of a setF from
a set system is the set of all elements that can be individually added toF to yield
another set from the same set system. Specifically for the setsystemFD of CCSs,
and given a relational databaseD = (E, t,R, R), the setAug(F ) corresponds to the
following set:Aug(F ) = {e ∈ E | F ∪ {e} is complete and connected}.
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Note that for the sake of efficiencyAug(F ) can be recursively updated after ex-
pandingF toF ′, as we explain in Sec. 3.5.

The closure operatorIn order to define a closure operator for the set systemFD we
make use of the set of compatible entities which is defined as follows:

Definition 3 (Compatible Entities) For a relational databaseD = (E, t,R, R) the
set of compatible entities of a setF ∈ FD is defined asComp(F ) = {e ∈ E |
F ∪ {e} is complete}.

Clearly,Comp(F ) ⊃ Aug(F ). We note that, as opposed toAug(F ), the set
Comp(F ) is an anti-monotone set, i.e., forF ′ ⊇ F , Comp(F ′) ⊆ Comp(F ). This
follows from the observation that bigger sets have less compatible elements than their
subsets. We now define the following operator.

Definition 4 (g operator) For a relational databaseD = (E, t,R, R) we define the
operatorg : FD → P(E) as

g(F ) = {e ∈ Aug(F ) | Comp(F ∪ {e}) = Comp(F )} .

In order to conclude in Corollary 1 below thatg is a closure operator onFD, we
first need to prove that the codomain ofg is FD and then prove that three properties
of a closure operator, i.e., extensivity, monotonicity andidempotence hold.

Proposition 1 For all relational databasesD = (E, t,R, R), the codomain of theg
operator is the set systemFD of CCSs.

Proof We need to show that for every CCSF ∈ FD, g(F ) is also complete and
connected.

Connectedness follows trivially from the fact that only elements fromAug(F )
are added, i.e. only elements for whichF ∪ {e} is connected.

To show completeness, let us assume thatg(F ) is not complete. This means that
there exists a pair of elementse, e′ ∈ g(F ) such that{t(e), t(e′)} ∈ R and{e, e′} 6∈
R. However, it holds trivially thate ∈ Comp(F ∪ {e}) ande′ ∈ Comp(F ∪ {e′}).
Exploiting the fact thatComp(F ∪ {e}) = Comp(F ∪ {e′}) = Comp(F ) (from
the definition ofg), this means thate ∈ Comp(F ∪ {e′}). Thus by definition of
compatibility alsoF ∪ {e} ∪ {e′} is complete—a contradiction.⊓⊔

It is trivial to see that the operatorg is extensive as it does not remove any el-
ements from the set it is applied to. Let us now prove thatg is also monotone and
idempotent.

Proposition 2 For all relational databasesD = (E, t,R, R), the operatorg is
monotone.

Proof Assume the operator is not monotone, i.e., there is anF ′, F ⊆ F ′,F, F ′ ∈ FD,
such thatg(F ) 6⊆ g(F ′). This means that∃e ∈ g(F ) such thate 6∈ g(F ′). By the
definition this can happen if:
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– e 6∈ Aug(F ′). This cannot be becauseF ′ ∪ {e} is not connected, sincee ∈
Aug(F ) andF ′ is a CCS withF ′ ⊇ F . Therefore it must be becauseF ′ ∪ {e}
is not complete. Therefore∃f ∈ F ′ such that{t(e), t(f)} ∈ R but {e, f} 6∈ R.
Thereforef 6∈ Comp(F ∪{e}). However sinceF ′ ⊇ F andf ∈ F ′, it must hold
thatf ∈ Comp(F ). Since we have assumed thate ∈ g(F ), this is a contradiction.

– Comp(F ′ ∪ {e}) ⊂ Comp(F ′) (because of the anti-monotonicity of theComp

set). Therefore there is anf such thatf ∈ Comp(F ′) but f 6∈ Comp(F ′ ∪
{e}). From the definition ofcompletenessthis means that{t(e), t(f)} ∈ R, but
{e, f} 6∈ R. Thereforef 6∈ Comp(F ∪ {e}). On the other hand sincef ∈
Comp(F ′) andF ′ ⊇ F , it follows thatf ∈ Comp(F ). This is a contradiction
since we have assumed thate ∈ g(F ).

⊓⊔

Proposition 3 For all relational databasesD = (E, t,R, R) with the property that
∄e ∈ E such that{e} ∪ Ei is complete and connected for ani ∈ t(E), the operator
g is idempotent.

Proof Assume that for a databaseD = (E, t,R, R), such that∄e ∈ E such that
{e}∪Ei is complete and connected for ani ∈ t(E), the operatorg is not idempotent.
This can only happen ifAug(F ) 6⊇ Aug(g(F )), because ifAug(F ) ⊇ Aug(g(F ))
there can be no additional element holding the properties ofthe closure.Aug(F ) 6⊇
Aug(g(F )) means that∃f ∈ g(F ) such that∃i ∈ t(Aug({f})) with i 6∈ t(Aug(F )).
But sincef ∈ g(F ), this can happen only ifComp(F ∪{f})∩Ei = Comp(F )∩Ei.
However, becausei 6∈ t(Aug(F )), it follows thatComp(F ∪ {f}) ∩ Ei = Ei.
Therefore the setEi ∪ {f} is complete and connected. This is a contradiction.⊓⊔

Corollary 1 For all relational databasesD = (E, t,R, R), with the property that
∄e ∈ E such that{e} ∪ Ei is complete and connected for ani ∈ t(E), the operator
g is a closure operator.

This Corollary 1 together with Theorem 1 finally shows correctness of Algo-
rithm 1.

3.3 The RMiner algorithm with additional constraints

In Sec. 3.2 we presented an algorithm to mine the set of MCCSs by enumerating the
set of closed CCSs. To increase the scalability of the algorithm even more, we define
a pattern syntax which corresponds to CCSs that satisfy an additional constraint. The
goal now is therefore to mine maximal, constrained CCSs by enumerating a smaller
set than the closed CCSs.

More specifically we define a constraintc on the minimum number of entities per
entity type, and we refer to it asminimum coverage constraint. When reduced to the
binary transaction database case, this constraint corresponds to having a minimum
number for items in a pattern as well as a minimum number of supporting transac-
tions. We now formally define this constraint.
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Definition 5 (Minimum coverage constraint)
For all i ∈ t(E) of a relational databaseD = (E, t,R, R), we fix a numberci ∈ N
and define

c(F ) =

{

1, if ∀i ∈ t(E), |F ∩ Ei| ≥ ci

0, otherwise
.

In order to exploit the fact that we are interested in mining only a subset of max-
imal CCSs, i.e., the ones that satisfy the constraint, we need to use this constraint for
pruning (in line 6 of Algorithm 1). Howeverc(F ) cannot directly be used for pruning
as the invalidity of the constraint on an enumerated CCSF does not imply invalidity
of its complete and connected supersets. A correct way of pruning is to check the va-
lidity of the constraint on the set(Comp(F ) \B). Recall here thatB in Algorithm 1
is the set of elements already considered as extensions toF . Checking the validity of
the constraint on the set(Comp(F ) \B) means verifying if the constraint would end
up being satisfied in the most optimistic case when all allowable compatible elements
are added toF . If (Comp(F ) \ B) does not satisfy the constraint, no CCS that is a
superset ofF will ever satisfy the constraint as there exist insufficientelements that
F could potentially be extended with in order to satisfy the constraint. Thus any set
F for which the constraint is not satisfied on(Comp(F ) \B) can be pruned.

In what follows we formalize this intuition by defining an upper bound̄c of the
constraintc that is based on(Comp(F ) \B), whereB is the set of elements already
considered as extensions toF . We then prove that̄c is anti-monotone which allows
us to show that the set system of CCSs that satisfyc̄ is strongly accessible, such that
the divide and conquer fixpoint listing algorithmic framework remains applicable.

Definition 6 (Constraint upper bound)
For all i ∈ t(E) of a relational databaseD = (E, t,R, R), we fix a numberci ∈ N
and define

c̄(F ) =

{

1, if ∀i ∈ t(E), |(Comp(F ) \B) ∩ Ei| ≥ ci

0, otherwise
,

whereB is the set of elements already considered as extensions toF .

Clearly, c̄(F ) ≥ c(F ) for all F ∈ FD becauseF ⊆ (Comp(F ) \ B) and thus
|(Comp(F ) \B) ∩ Ei| ≥ |F ∩ Ei|. This means that whenever the upper bound is 0
the constraint is 0 as well. However this not true for when theupper bound is 1, which
means that the upper bound of he constraint can only be used for forward pruning.

Proposition 4 The upper bound̄c(F ) is an anti-monotone constraint,i.e, ifc̄(F ) = 0
for a setF then for everyF ′ ⊇ F , c̄(F ′) = 0

Proof Assume the contrary, i.e., for a setF such that̄c(F ) = 0 there is a setF ′ ⊇ F

such that̄c(F ) = 1. This means that∃i ∈ t(E) such that|(Comp(F )\B)∩Ei| < ci
but |(Comp(F ′) \ B′) ∩ Ei| ≥ ci. From the anti-monotonicity of the setComp we
have thatComp(F ′) ⊆ Comp(F ). Also B′ ⊇ B. Therefore(Comp(F ′) \ B′) ⊆
(Comp(F ) \B) which means that the assumption we made leads to a contradiction.
Therefore thēc(F ) is an anti-monotone constraint⊓⊔
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We are now going to show that theset system of CCSs that satisfȳc in a rela-
tional databaseD = (E, t,R, R) defined as

FC = {F ⊆ E | F connected∧ F complete∧ c̄(F ) = 1}

is strongly accessible such that the divide and conquer fixpoint listing algorithm can
be used directly to enumerate the set of closed CCSs that satisfy the upper bound̄c.
Then we are going to show how Algorithm 1 is adapted usingc̄ and that it outputs
exactly the set of maximal CCSs that satisfy the original constraintc.

Proposition 5 For all relational databasesD = (E, t,R, R) the set systemFC is
strongly accessible.

Proof From the anti-monotonicity of̄c it follows that the set system of subsets sat-
isfying c̄ is an independence system. Thus,FC is an intersection of a strongly ac-
cessible set system (namelyFD) and an independence system. From the proof of
Theorem 1 we already know that the intersection of a stronglyaccessible set system
and an independence system is strongly accessible.⊓⊔

To adapt Algorithm 1 to enumerate only the closed CSSs that satisfy the upper
boundc̄, we only need to add the extra pruning condition to line 3:

if F ′ ∩B = ∅ ∧ c̄(F ′) = 1 then

It remains to show that the adapted algorithm outputs exactly the set of maximal
CCSs that satisfy the original constraintc. Let us denote asCc̄ the set of closed CCSs,
C, that satisfȳc, asMc̄ the set of maximal CCSs,M, satisfyingc̄ and asMc the set
of maximal CCSs satisfyingc. We already know thatM ⊆ C. ThereforeMc̄ ⊆ Cc̄.
From the additional fact that maximal solutions cannot be extended and̄c is an upper
bound ofc, it follows thatMc̄ = Mc. ThereforeMc ⊆ Cc̄, which means that the
adapted algorithm enumerates a superset of the set of maximal CCSs that satisfyc
and outputs exactly this set.

3.4 Illustrating Example

Before analysing the performance of RMiner we give an illustrating example of how
it runs. Figure 4 shows the search space of RMiner on a toy dataset comprising of
four entity types and two relationship types. It also shows in detail the values of all
the relevant sets for the three running steps of RMiner that correspond to the leftmost
branch of the tree.

3.5 Performance

In Secs. 3.1, 3.2 we showed the applicability of the fixpoint listing framework and
described the algorithm at a high level. Here we show how Algorithm 1 is imple-
mented, we discuss time and space complexity and give additional implementation
details which make the algorithm practically efficient. To show the space and time
complexity we follow a similar procedure as Boley et al (2010).
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{  }

{a} {b} {d} {e} {f}{c}

{ae} {bd} {cf} {ef}

{aef}{acf} {bdg} {cfe}

{acfe}

1. F={}

Adj({})={a,b,c,d,e,f,k}

select a

Comp({})={a,b,c,d,e,f,k}

Comp({a})={a,b,c,e,f,k}

g({a})={}

3. F={a,c}

select f

Adj({a,c})={a,c,e,f}

Comp({a,c})={a,c,e,f}

Comp({a,c,f})={a,c,e,f}

g({a,c,f})={a,c,e,f}

{k}

{dg}

2. F={a}

select c

Adj({a})={a,c,e}

Comp({a})={a,b,c,e,f,k}

Comp({a,c})={a,c,f,e}

g({a,c})={}
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Fig. 4 Illustrating example of running RMiner on a toy dataset comprising of four entity types and two
relationship types. The left part of the figure shows the search space of RMiner for this toy dataset. The
plain arrows represent the steps of RMiner, while the dashedarrows represent the search steps if the closure
operator was not used. The right part of the figure shows in detail the values of all the sets for the running
steps of RMiner that correspond to the leftmost branch of thesearch tree.

Algorithm 2 Implemented RMiner
Global:
1: Comp list List of Compatible elements for every entity.
2: Rel list List of related types for every entity type.

Main ()
1: RMiner(∅, ∅, Comp(∅), Aug(∅), types(∅))

RMiner (F,B, Comp(F ), Aug(F ), types(F ))

1: for all e ∈ Aug(F ) \ (F ∪B) do
2: types((F ∪ {e})) = types(F ) ∪ Rel list(t(e))
3: Comp(F ∪ {e}) = Comp(F ) ∩ Comp list(e)
4: Aug(F ∪ {e}) = construct aug(Comp((F ∪ {e})), types((F ∪ {e})))
5: F ′ = compute closure(Aug(F ∪ {e}), Comp(F ∪ {e}))
6: if F ′ ∩B = ∅ then
7: if F ′ = Aug(F ′) then
8: OutputF ′

9: else
10: RMiner (F ′, B, Comp(F ∪ {e}), Aug(F ∪ {e}), types(F ∪ {e}))
11: end if
12: end if
13: B = B ∪ {e}
14: end for

ImplementationThe implementation of RMiner is shown in Algorithm 2. We store
two types of global information which we get directly from the data set. A structure
namedComp list, which contains the set of compatible entitiesComp(e) for every
e ∈ E and a structure namedRel list which contains all entity types an entity type
is related through the relationship types, for every entitytype.
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In principle, the choice of the elemente ∈ Aug(F ) \ (F ∪B) in line 1 of Algo-
rithm 1 is free. We assume an arbitrary ordering of the elements inE and implement
the second recursion of Algorithm 1 and the selection of an element with a for loop.

The implementation of RMiner is based on the fact that when adding an element
e to a setF the we can computeComp(F ∪ e) asComp(F ∪ e) = Comp(F ) ∩
Comp(e), because adding an elemente to a setF can only reduce the set of com-
patible elements due to the anti-monotonicity of this set (line 3). Also by keeping
track of the entity types that are related to the entity typesalready inF (line 2) we
can computeAug(F ) from Comp(F ) by iterating through it and considering only
entities of these types.

Space ComplexityLetStypes, SComp andSAug the space required for storingtypes,
Comp andAug respectively. The total space complexity for this implementation is
n× (Stypes + SComp + SAug) wheren is the number of entities in the input data, as
we need to store these sets as many times as the depth of the search tree. Letm be
the number of entity types in the input data. For the individual complexities we have:

– Stypes isO(m)
– SComp isO(n)
– SAug isO(n)

Therefore the total space complexity isO(n2) +O(n ∗m) which finally isO(n2).
Although this space complexity is quadratic to the the inputsize, the scalability

experiment we did in Sec. 7.3 shows that in practice it appears to be linear. This
is because in practice the depth of the search tree is very small (in most cases the
search space gets less than 2 times deeper for a two orders of magnitude increase
of the input size). However the theoretical space complexity can become linear as
well if one follows the implementation strategy of the modified algorithm proposed
in (Boley et al 2010).

Time ComplexityWe study the time complexity of Algorithm 1 in terms of the delay
between producing two closed CCSs. The total complexity is given by the number
of closed CCSs times the delay between producing two closed CCSs. LetTg be the
complexity of computing the closure,Tint the complexity of intersecting two sorted
sets which is the complexity of computing the setComp, TAug the complexity of
computing the setAug, Ttypes the complexity of computing the settypes andTeq

the time to check the equality of two sorted sets. In the worstcase the time between
producing two closed CCSs (lines 8 and 10 of Algorithm 2) isn× (Ttypes +TAug +
Tint+Tg), wheren is the number of entities in the input size. This correspondsto the
worst case time in which no closed CCS is produced because of the condition in line
6 being false. Letm be the number of entity types in the input. All the sets involved
are ordered. For the individual time complexities we have:

– Ttypes isO(m).
– Tint isO(n).
– TAug: isO(n).
– Tg: is n× Teq, which isO(n2).
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Therefore, the delay between producing two closed sets isO(n3). Note here that
in the case of RMiner with constraints the complexity of computing c̄(F ) is O(n)
and does not change the delay.

Practical PerformanceAlthough the time delay between producing two closed CCSs
isO(n3), practically it depends on the size of the setAug(F )\(F∪B) for the number
of times the closure is computed without any closed CCS beingproduced and the set
Aug(F ) for the number of elements checked if they are in the closure.|Aug(F )|
depends on the type of data and is smaller for sparser data sets. However since the
next closed CCS is produced only whenF ′ ∩ B = ∅ we can incorporate this in the
computation of the closure and stop checking if any more elements are in it as soon
as one of them belongs toB. To further enhance the effectiveness of this approach,
we additionally choose a specific ordering of the entities inE, in terms of increasing
cardinality of the setAug(e). This way elements with smallAug(e) which are going
to need a small number of closure checks are considered first and elements which are
going to need a larger number of closure checks are considered later. When elements
that need more closure checks are considered, the setB has increased as well and
therefore it’s more likely that less closure checks are done.

In the case of RMiner with constraints the total time dependson the number of
closed CCS that satisfȳc, i.e., the cardinality of the enumerated set of CCSs. This
number depends on the order according to which elements ofAug(F ) \ (F ∪B) are
considered and can be reduced by first considering entities of types not yet satisfying
the constraint (if any). This helps pruning branches that have supersets not satisfying
the constraint. In this case we therefore rearrange the order of the entities in every
sub-call so that elements with smaller cardinality of the set Aug({e}) that are also of
a type not yet satisfying the constraint are considered first.

Finally improvement in the practical performance can be obtained if all sets are
stored in composite structures of separate lists for different entity types. This way the
setAug(F ) does not need to be stored and computed explicitly as there could be a
for loop iterating over the entity types inComp(F ) and only considering entities of
types intypes(F ). Also the computation of̄c(F ) in this case can be done inO(m)
which is an improvement since it holds thatm < n.

4 Assessment of patterns

Although much smaller than the total number of CCSs, the number of MCCSs is
usually still too large to be practical for an end user. This is similar to the fact that
the set of closed itemsets typically needs further reduction to become useful. Typ-
ically this problem is addressed by selecting or ranking patterns using objective or
subjective interestingness measures (Geng and Hamilton 2006). Here, we choose to
define interestingness with respect to a specific type of prior information, by defin-
ing an interestingness measure which deems an MCCS to be moreinteresting if it
is more unexpected given this prior information. More specifically, we consider as
prior information the number of relationship instances each entity is involved in, in
the different relationship types of the MRD. This corresponds to the degree of each
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node in the different relationship types of theK-partite graph representation of the
MRD. An MCCS is more interesting if it is harder to explain based on this prior in-
formation alone. For example in the setting of a movie MRD, anMCCS containing
directors that have directed many movies would be deemed less interesting by our
approach than an equally large MCCS containing less prolificdirectors, as the latter
MCCS cannot as easily be attributed to randomness and is moreunexpected.

To introduce the interestingness measure, we can closely follow the work pre-
sented in (De Bie 2011b; De Bie et al 2010), where it is argued that subjective inter-
estingness can be formalized by contrasting patterns with abackground model that
is the Maximum Entropy model subject to the prior information. Thus we only need
to detail the Maximum Entropy model for the case of MRDs (see Sec. 4.1), and the
approach to contrast MCCS patterns with this model to arriveat an interestingness
measure (see Sec. 4.2).

4.1 Maximum-Entropy model of the user’s prior information

We consider as prior information the number of relationshipinstances each entity
is involved in, for every relationship type in the MRD. Following De Bie (2011b),
we formalize this prior information in a probability distributionP , fitting the Max-
imum Entropy distribution on theMRD, with constraints on the expected degree of
the nodes for every relationship type being equal to their actual degree. This is the
distribution of maximal uncertainty about the data with only the prior information as
bias.

The nature of the constraints is such that they are defined forevery relationship
typeR{i,j} of theMRD without imposing any dependence between the relationship
types. Therefore, the Maximum Entropy distribution for theMRD subject to these
constraints will be a product of independent Maximum Entropy distributions, one
for each relationship type. Indeed, if there were dependencies between the relation-
ship types, the Entropy of the joint distribution would be reduced by their mutual
information (Cover and Thomas 2005), and would therefore not be maximal. Rep-
resenting each relationship type as a binary databaseDij with Dij(k, l) = 1 when
(eki , e

l
j) ∈ R{i,j}, the Maximum Entropy distribution for the MRD is thus:

P (∪ijDij) =
∏

ij

Pij(Dij).

Maximizing the Entropy for every relationship typeR{i,j} of the MRD repre-
sented by a binary matrixDij subject to constraints on the expected number of re-
lationship instances for every entity, is equivalent to maximising the Entropy of a
distribution for a binary database subject to constraints on the expected row and col-
umn sums. The solution of this problem was shown to be a product of independent
Bernoulli distributions (De Bie 2011b):

Pij(Dij) =
∏

k,l

P kl
ij (Dij(k, l)),

with P kl
ij (Dij(k, l)) =

exp
(

Dij(k, l)(−λk
ij − µl

ij)
)

1 + exp(−λk
ij − µl

ij)
,
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whereλk
ij , µ

l
ij are parameters that can be computed efficiently. Indeed, as shown

in De Bie (2011b), they can be found by solving the Lagrange dual of the maximum
entropy optimization problem. This is a convex optimization problem of which the
Hessian and the gradient can be computed efficiently, such that it can be solved ef-
ficiently using e.g. a few Newton iterations, or alternatively the conjugate gradient
method for particularly large problems. For sparse datasets significant further opti-
mizations can be made (See De Bie (2011b) for full details).

4.2 Contrasting MCCSs with the Maximum Entropy model

An interesting pattern conveys as much information as possible when contrasted with
the user’s prior information, as concisely as possible. Following earlier work (De Bie
2011b), we can formalize this idea by quantifying the interestingness of an MCCSF
as the ratio of the self information of the MCCS and its description length:

Interestingness(F ) =
SelfInformation(F )

DescriptionLength(F )
.

Here, the self information of an MCCS is defined given the probability of its
edges under the Maximum Entropy model, as:

SelfInformation(F ) = −
∑

{i,j}∈R

∑

{k,l}:k∈F∩Ei,l∈F∩Ej

log(P kl
ij (1)).

An MCCS is described most naturally by the set of entities it contains. More
specifically, we choose to describe MCCS patterns by specifying for each entity
whether it does or does not belong to the pattern. To specify that an entity belongs to
an MCCS, we will use− log(p) bits, and to specify it does not belong to the MCCS
we will use− log(1−p) bits, wherep is a probability parameter. Such a code satisfies
Kraft’s inequality exactly, and is thus optimal and asymptotically achievable (Cover
and Thomas 2005). Using this approach, the description length of an MCCS pattern
F with n = |F | entities and given that the graph of the MRD hasN = |E| entities is
given by:

DescriptionLength(F ) = −
∑

i6∈F

log(1 − p)−
∑

i∈F

log(p),

= n log
(

1−p
p

)

+N log
(

1
1−p

)

.

In De Bie (2011b) it was suggested to setp by default to the density of the
database (ratio of the number of relationship instances to the number of entities),
an approach we adopted in our empirical results as well. However, the parameter can
be tuned so as to bias the search more toward larger in number of nodes MCCSs
(largerp) or toward smaller in number of nodes MCCSs (smallerp), if desired.



Interesting Pattern Mining in Multi-Relational Data 19

5 Related Work

Mining multi-relational data is a research topic that has been concerning the data min-
ing community for a long time (Srikant and Agrawal 1996). Most previous methods
on this topic are frequent pattern mining methods either based on Inductive Logic
Programming (ILP) (Dehaspe and Toivonen 1999; Nijssen and Kok 2003; Garriga
et al 2007) or generalizing ideas from frequent itemset mining to the relational set-
ting (Ng et al 2002; Goethals et al 2010; Koopman and Siebes 2008; Cerf et al 2009;
Ji et al 2006). We discuss these methods in Sec. 5.1.

Although we consider our method as a pattern mining method, since our MRD
formalisation allows for a graph representation of the data, graph mining methods
are related as well. We discuss these methods in Sec. 5.2. In the same section we also
discuss recent work on networks with multiple types of nodesand interactions, which
is only broadly related since the mining tasks considered are very different to the one
in this paper. Finally in Sec. 5.3 we discuss related work that does not fall into the
categories mentioned above.

5.1 Mining multi-relational databases

Well known ideas and algorithms from frequent itemset mining can be used for
MRDs unaltered if applied on the join of all tables. The syntax of this type of pat-
terns is essentially that of itemsets, with items in this case being attribute values and
transactions being the tuples of the join table (Ng et al 2002; Goethals et al 2010;
Koopman and Siebes 2008). The characteristic of this pattern syntax is that a tuple
always contains one attribute value per attribute and as a result it is impossible to
have two values of the same attribute in the same pattern. An itemset of this type for
instance would not be able to capture the fact that a directorcan be related to many
films. This is something that an MCCS pattern naturally captures. However, itemsets
on the join table can still capture co-occurrences of attribute values that belong to
different attributes.

On the other hand, the support, measured as the ratio of the tuples of the join table
that contain an itemset, does not have a clear meaning as attribute values are repli-
cated due to the join operation. A different approach is taken by Smurfig (Goethals
et al 2010) where the support is measured with respect to every table, as the relative
number of keys that the items correspond to.

Some previous methods have extended the notion of formal concepts (or closed
itemsets and their supporting transactions) by considering entity types that are3-ary
related (Ji et al 2006; Jäschke et al 2008; Trabelsi et al 2012) or n-ary related with
n ≥ 2 (Cerf et al 2009; Voutsadakis 2002). They define a pattern as valid if all the
entities it contains are related in the data, which is similar to our notion of complete-
ness. They also define a pattern as closed if no additional entity can be added to it,
which is similar to our notion of maximality. However, the main difference between
these methods and our method is that they are designed to workon one 3-ary orn-
ary relationship while our method is designed to work on multi-relational data with
many binary relationships. The methods that work on onen-ary relationship could be
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used for the problem of mining MCCSs in multi-relational data if this problem was
reduced to the problem mining closed patterns from onen-ary relationship. This can
be done by considering the join of every combination of relationships and all single
relationships in the database, resulting in a number ofn-ary relationships that is ex-
ponential in the number of relationships in the database. Methods for mining closed
patterns in onen-ary relationship can then be applied to each of these relationships
resulting in the same set of patterns that would be the resultof applying RMiner to
the original problem. However, when taking this reduction,the original structure of
the data is lost which means that the MCCSs involving different subsets of entity
types are produced independently instead of being built up from a smaller MCCS
containing less entity types as in the case of RMiner. This results in these methods
quickly becoming prohibitively costly. We empirically illustrate this in Sect. 7.3, with
an experiment comparing RMiner and the algorithm of Cerf et al (2009).

Departing from the pattern syntax of itemsets a group of research suggested min-
ing association rules of simple conjunctive queries, whichare simple forms of re-
lational algebra queries,i.e, a selection succeeded by a projection (Jen et al 2010;
Goethals and Le Page 2008). This is an interesting pattern syntax as relational queries
are in general more expressive than itemsets. However the patterns are still linked
to a support measure which is computed on the join table. Interestingly, the work
of Jen et al (2010), uses the functional dependencies of the attributes to prove anti-
monotonicity of the support for this pattern syntax which isa way to make use of the
relational data structure rather than just the join table.

Warmr (Dehaspe and Toivonen 1999) and Farmer (Nijssen and Kok 2003) are
methods based on ILP. The patterns have the form of logic rules which can be re-
garded as local models of the database. The goal of these methods is to mine for the
most frequent rules. The support is defined as the relative number of key values of
one target table that satisfy the rule. Therefore the more general the rule the higher its
support will be. This type of pattern syntax is very expressive and can capture the re-
lational structure well. However, the objective of these methods (frequent rules about
the data) is different than ours (interesting patterns of co-occurring attributes). Fi-
nally the interestingness measure we propose in Sec. 4 cannot be applied on Warmr
and Farmer patterns and evaluating the interestingness of this kind of patterns is a
challenge.

Within the ILP framework the work in (Garriga et al 2007) defined closure oper-
ations for patterns of the syntax of Warmr and Farmer and proposed an extension of
the LCM algorithm (Uno et al 2004a), originally proposed forfrequent closed itemset
mining, for mining frequent rules. Although the purpose of aclosure operator in this
context is the same as in the context of MCCSs, i.e., extending patterns with valid sets
of elements to reduce the search space, the semantics are different. In the ILP case,
rules are extended with atoms such that the extended rule is satisfied by the same set
of terms in the data, whereas in our case a CCS is extended withan entity such that
the extended CCS has the same set of compatible entities.

Warmr, Farmer, and Smurfig are all based on the notion of a recurring pattern,
and they directly depend on a support notion. Measuring the support with respect
to one or a set of target tables, makes the results difficult tointerpret and therefore
introduces usability issues. The potential user will have to understand what exactly
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it means for a recurring pattern to be frequent with respect to a certain target table.
Additionally, these techniques are likely to suffer from the same problems as other
frequent pattern mining techniques, in particular the factthat support is usually only
weakly related to interestingness.

RDB-Krimp (Koopman and Siebes 2009) is a method for mining relational databases
which is related to ours in that it also uses information theoretic ideas for the assess-
ment of patterns. It uses the pattern syntax of Farmer (Nijssen and Kok 2003) but
considers just patterns of depth two (patterns of a target table and all the tables re-
lated to it with a foreign key). The most frequent patterns ofthis kind are mined for
every table of the database as a target table and then RDB-Krimp finds the most char-
acteristic patterns among them using the MDL principle. Thefocus of this method is
on the total description length of the database joined with the patterns, and patterns
are deemed more interesting if they are better at compressing this description length.
We instead deem patterns more interesting if they describe surprising aspects of the
database in a concise way, which we argue makes our results more relevant to an end-
user. Finally RDB-Krimp relies on heuristic search to find the optimal set of patterns
that best compress the database which is not the case for our method that searches
exhaustively.

A recent approach which acknowledges the usability issues of the support as well,
is presented in (Nijssen et al 2011). The task of mining multi-relational databases is
formalised as a constraint programming problem where a conjunction of constraints
is defined and a general constraint programming solver is used to find sets of entities3,
satisfying these constraints. The syntactic constraint used in this paper is defined on
one relationship and enforces the corresponding entities to form a biclique. A con-
junction of biclique constraints for all the relationshipsin the database corresponds to
the syntax of CCSs. Size constraints are defined as well, for the minimum/maximum
number of entities required, which are of the same nature as the minimum coverage
constraint we define in Sect. 4. Finally, a maximality constraint on an entity type,
with respect to the rest of the constraints is defined. Although a conjunction of such
constraints with respect to every entity type could be used in addition to the biclique
constraint to find MCCSs, a useful definition of closure that takes into account the
relational setting to increase the efficiency of finding suchpatterns is not given. In
fact it is mentioned that multi-relational closed pattern mining is possible by apply-
ing the maximality constraint to one or more of the entity types. However, while
maximal patterns (MCCSs) correspond to closed ones when theproblem is reduced
to itemset mining (see Sect. 2), this relation is unclear forthe case of more than one
relationships (see Sect. 3).

Finally, our method might seem related to that in (Zaki et al 2007) on mining
clusters of attributes in an attribute-value table. Indeedthe proposed approach of
this paper is based on modelling an attribute-value table asa K-partite graph and
mining maximal cliques in this graph. However the modellingis different to ours as
all attributes of the table can be connected to each other, whereas according to our
modelling of a single table, there are relationship types only between every attribute

3 Please note that by entities and entity types here, we actually refer to our notion of the terms. The
same notions are defined as objects and entities respectively in (Nijssen et al 2011).
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and the primary key attribute. Also from an algorithmic point of view, the proposed
algorithm of this paper for mining maximal K-cliques is based on enumerating all
K-cliques without taking advantage of any notion of closure.

5.2 Mining graphs and networks

Mining all maximal cliques of a graph is an old problem (Bron and Kerbosch 1973)
for which many algorithms exist (Pardalos and Xue 1994). Recently, remarkably ef-
ficient methods for enumerating directly only the maximal cliques have been pro-
posed. Notably Makino and Uno (2004) introduced a method formaximal clique
enumeration with time and space complexities comparable RMiner. The time delay
is O(M(n)) whereM(n) is the time complexity for multiplying twon × n matri-
ces which can be done inO(n2.376) time. The space complexity of this algorithm
is O(n2) which corresponds to storing the twon × n matrices being multiplied, i.e.
equal to the space complexity of RMiner.4 Methods for (maximal) clique enumera-
tion could therefore be worth investigating for use in mining MCCSs.

Clearly, MCCSs are not cliques in the graph representation of the database, given
that some edges are forbidden (between entities of the same type, and between entities
of types that are not related). However, one can try to reducethe problem of mining all
MCCSs to the problem of mining of all (maximal) cliques by adding edges wherever
these are forbidden. Let us call the resulting graph the auxiliary graph (note that this
graph is typically going to be dense). It is straightforwardto see that in the auxiliary
graph each MCCS is indeed a clique, such that a clique enumeration method applied
to the auxiliary graph would indeed also enumerate all MCCSsin the database.

However, this reduction is inefficient, as can be understoodmost by means of an
example. Consider a multi-relational database with five entity typesE1 . . . E5 and
the following relationship types:R12, R23, R34, R45. Let us assume that there aren1

MCCSs with entities from typesE1 andE2 only, andn2 MCCSs with entities from
typesE4 andE5 only. Now, note that in the auxiliary graph all entities of typeE1 and
E2 are connected to all entities of typeE4 andE5. This means that the union of any
MCCS over typesE1 andE2 with an MCCS of typeE4 andE5 will be a (maximal)
clique in the auxiliary graph. Thus, thesen1+n2 MCCSs give rise ton1×n2 maximal
cliques, a quadratic blowup. In general the blowup is polynomial: depending on the
number of entity types and the relationships between them, amaximal clique in the
auxiliary graph may be the union of a larger number of MCCSs.

Another well known graph mining task which could be seen as related is fre-
quent subgraph mining (Yan and Han 2002; Kuramochi and Karypis 2001). Given a
database of many graphs and a support threshold, the goal of frequent subgraph min-
ing is to mine all subgraphs that occur more often than the support threshold suggests.

4 Note that practically, the quadratic space complexity of RMiner results from multiplying a linear
space complexity with the maximal search tree depth, which,as we will show in Sect. 7.3, is practically
a small constant. Also, as we discussed in Sect. 3.5, the practical time delay of RMiner depends on the
density of the data set and can be optimised in practice by taking particular implementation choices. In
Sect. 7.3 we show experiments where the total running time islinear in log scale with respect to the input
size when constraints are used. Thus, even though thetheoreticalcomplexities of Makino and Uno (2004)
and RMiner are comparable, RMiner probably scales betterin practice.
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A closed subgraph in this setting is a subgraph for which no proper supergraph with
the same support exists in the database (Yan and Han 2003). The task of frequent
subgraph mining is therefore very different to the one proposed in our paper where
the goal is to mine maximal complete connected components inoneK-partite graph.

Recent work from the networks community has focused on networks which con-
tain different types of nodes or interactions. Although these networks are mostly re-
ferred to as heterogeneous networks (Sun et al 2009; Ji et al 2010, 2011; Sun et al
2012b,a; Tang et al 2012; Maruhashi et al 2011), this name does not signify a single
structure. In fact, different structures under this name have been studied and different
mining tasks on them considered.

A group of papers consider heterogeneous information networks that correspond
to a star entity-relationship schema. The mining tasks thathave been proposed for
this type of networks are clustering, classification or linkprediction. Two different
clustering tasks have been proposed: clustering of the nodes that correspond to the
middle entity using the nodes of the other entities as features (Sun et al 2009), or
clustering of any entity (target entity) using the nodes of one another entity, connected
through a path to the target entity, as features (Sun et al 2012b). For the classification
task it is assumed that certain subgraphs of the network havea particular class tag.
Then the goal is to find the confidence with which untagged nodes belong to a certain
class using the number of edges of different relationship types that the node has with
every class (Ji et al 2010). The same framework is used in combination with ranking,
where nodes within a class are ranked based on their importance and this is used to
give different weights to the different edges of unlabellednodes with the class. As
more and more nodes are assigned to classes the ranking is updated (Ji et al 2011).
The link prediction task corresponds to predicting links ofa target relationship type
based on topological features of the network (Sun et al 2012a). Since our method is
an unsupervised one and does not do any prediction, it is mostly related to clustering.
However the clustering methods proposed do not employ the particular structure of
the network but to define which is the entity to be clustered and what are the features
used for clustering. After this, clustering algorithms forunstructured data are used.
This approach also results in one-dimensional clusters. Instead, our method uses the
K-partite structure of the network to produce multi-dimensional clusters of nodes.

A different type of heterogeneous network where there is onetype of node and
multiple types of edges/interactions, is considered in (Tang et al 2012). The proposed
method finds cross-dimensional communities of nodes by integrating topological fea-
tures from the different dimensions. The topological features correspond to the top
eigenvectors of the modularity matrix and the cross-dimensional communities are
found by maximising the summation of all the pair-wise correlations of the features.
Although this task is very different to the one considered inour paper, it is an inter-
esting approach as the communities found contain information from all the different
dimensions of the data.

Finally, tensors are considered as heterogeneous networksin (Maruhashi et al
2011), where a tensor decomposition method is employed to mine patterns of entities
of one dimension that share one entity from each of the other dimensions or patterns
that correspond to bi-partite graphs in a two dimensional slice of the tensor.
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Fig. 5 Entity-Relationship diagram of theimdb-3ent-1yearandimdb-3ent-10yearsdatasets.
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Fig. 6 Entity-Relationship diagram of thedblp dataset.

5.3 Other work

An approach for assessing the statistical significance of relational (SQL) queries
based on randomisations of different tables is proposed in (Ojala et al 2010). Al-
though this approach was not intended to propose a method to mine such patterns it
provides an insight towards making relational patterns useful to the user.

Finally the idea of representing relational databases as graphs has also appeared
in the Database research community with the Graph Database Models, but the focus
was of course representation and querying which led to more complex structures
(directed graphs often representing a hierarchical structure of entity types) (Angles
and Gutierrez 2008).

6 Qualitative Evaluation

In this section we show and discuss the top ranked patterns ofour method on different
real world datasets in order to highlight how our method is useful in different real
world scenarios. Moreover we qualitatively compare the patterns mined by RMiner
with those of two previous methods (namely Farmer (Nijssen and Kok 2003) and
Smurfig (Goethals et al 2010)) on the same dataset.

6.1 Real-world datasets

We did experiments on several real world datasets, the Entity-Relationship (E-R) di-
agrams of which are shown in Figures 5, 6 and 7 and their statistics are summarised
in Table 1. We produced two different views of the IMDB data base5, one containing
the titles, genres and directors of the films produced in 2010(imdb-3ent-1year) and
one containing the titles, genres and directors of films produced in the years 2001-
2010 (imdb-3ent-10years). To produce theimdb-3ent-10yearsdataset we neglected

5 Seehttp://www.imdb.com/
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Fig. 7 Entity-Relationship diagram of thestudentdbdataset.

Table 1 Database details. For every data set we show the total numberof entities and the relationship
density for every relationship type, which corresponds to the number of relationship instances divided by
the number of entities involved in this relationship type.

Num. of Rel. Rel. Rel. Rel. Rel. Rel.
Entities density density density density density density

Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

imdb-3ent-1year 30,130 7× 10−5 0.073
imdb-3ent-10years 104,291 2.5× 10−5 0.058

dblp 15,510 4× 10−4 4× 10−4 0.002 0.031 0.031
studentdb 401 0.016 0.143 0.333 0.333 0.109 0.011

all “Short” films. From the Dblp bibliography database6 we created thedblpdataset
which only contains papers with citation information (4947papers). Please note that
not all papers contained their citations in the data we downloaded from Dblp. Fi-
nally we also used the student database of the Computer Science department of the
University of Antwerp (Goethals et al 2010) (calledstudentdbin this paper).

6.2 Patterns of RMiner

Table 2 Output size and computation times of RMiner and RMinericdm.

Constraints Num. of Time(sec) Time(sec)
per entity type Patterns RMiner RMinericdm

imdb-3ent-10years (1,1,1) 54,672 577 2,280
dblp (0,0,0,0) 26,377 3,609 39,614

studentdb (1,1,1,1,1,1,1) 155 1 2

Table 2 summarizes all the different experiments we did, by showing the con-
straints we used, as well as the computation time and output size for each of them.
A preliminary version of RMiner, which was not applying the divide and conquer

6 Seehttp://www.informatik.uni-trier.de/∼ley/db/
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Fig. 8 The1st most interesting MCCS pattern in theimdb-3ent-10yearsdataset, as a graph. It represents
a set of film titles that are all directed by the same two directors and are of genre “Thiller”.

fixpoint listing framework but was rather an ad hoc algorithmnot taking advantage
of a full closure, was presented in (Spyropoulou and De Bie 2011). We extensively
compare RMiner with this algorithm, which we refer to as RMiner icdm, in Sect. 7.
However, for completeness, we report computation times forboth the RMiner and
RMiner icdm, here as well. We now analyse the top ranked patterns in every dataset.

IMDB DatabaseWe run RMiner on theimdb-3ent-10yearsdataset with constraints
of at least one entity per entity type. The results are shown in Figs. 8, 9 and 10 which
represent the1st, 2nd and3rd most interesting patterns respectively, ranked by the
interestingness measure presented in Section 4. They all have two directors (pairs of
brothers) and six or seven films which makes them interestingas they carry a lot of
information (number of edges), given that on average in thisdataset a director directs
1.51 films and a film has 1.04 directors, and this information is conveyed in a concise
way (number of nodes). The1st pattern (Fig. 8), contains the genre “Thiller” which
is two times less probable to be connected to a film than that the genre “Comedy” and
therefore it ranks higher than the other two because it contains more improbable edges
given the prior information of the user. The2nd pattern (Fig. 9) ranks higher than the
3rd (Fig. 10) because it contains more edges and therefore conveys more information.
The fact that the directors involved in all three of these patterns have directed very
few films in the dataset makes the edges of the patterns very improbable under the
user’s prior information and leaves the pattern involving the “Coen brothers” and all
their “Comedy” films in the years 2001-2010 in the 22nd place.
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Fig. 9 The2nd most interesting MCCS pattern in theimdb-3ent-10yearsdataset, as a graph. It represents
a set of film titles that are all directed by the same two directors and are of genre “Comedy”.

Fig. 10 The3rd most interesting MCCS pattern in theimdb-3ent-10yearsdataset, as a graph. It represents
a set of film titles that are all directed by the same two directors and are of genre “Comedy”.
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Fig. 11 The1st most interesting MCCS pattern in thedblp dataset, as a graph. It represents a group of
authors, a group of papers they published and a group of papers that are self citations, indicating that these
are papers these authors published on the same idea.
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Fig. 12 The6th most interesting MCCS pattern in thedblp dataset, as a graph. It represents a group of papers all of them citing another group of papers, indicating that they
are all papers on the same subject.
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Fig. 13 The 8th most interesting MCCS pattern in thedblp dataset, as a graph. It represents a group
of authors, a group of papers they published and a group of papers that are self citations. All papers are
published in the same conference. This pattern indicates that these are papers that these authors published
on the same idea and at the same conference.

DBLP DatabaseThe results of this dataset are shown in Figs. 11, 12 and 13. To
highlight the generality of our method we show the 1st, 6th and 8th most interest-
ing patterns as they are quite diverse in the kind of information they represent. The
1st pattern ranks high in terms of interestingness as it conveysa lot of information
(number of edges which are improbable under the user’s priorinformation) in a con-
cise way (number of nodes). The edges involved in this pattern are improbable if one
considers that the authors involved have written 7 and 11 papers respectively in this
dataset and that the cited papers involved are both cited by only 7 citing papers in this
dataset. The6th pattern, although it is very big in the number of nodes it ranks high
in terms of interestingness as the amount of information it conveys makes up for it.
More specifically the cited papers in the pattern get cited by14 citing papers when
the average in the dataset is 6.2. Finally the8th pattern contains a lot fewer edges
than the other two patterns (for example it contains half theamount of edges of the
1st one although it has only one node less) however, it still ranks high as the edges it
contains are very improbable give the prior information of the user.

Student Database datasetThe top-ranked MCCSs on thestudentdbdatabase are
shown in Figs. 14 and 15. Since the first two patterns were structurally similar (al-
though they convey non-redundant information), Figs. 14 and 15 show only the1st

and the3rd most interesting patterns. The1st ranked pattern (Fig. 14) is interesting
as it conveys a lot of information (number of edges) in a concise way (number of
nodes). The3rd pattern (Fig. 15), is less interesting than the1st as it contains just 1
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Fig. 14 The first most interesting MCCS pattern in thestudentdbdataset, as a graph. It conveys infor-
mation about a set of 67 students, the program, contract, thetrack they are following, two courses they
attend, the professor teaching these courses and the lecture room they are taught in. Note that the number
of student nodes is too large to show here, so we collapsed them onto one node labelled with “...”.

Fig. 15 The third most interesting MCCS patterns in thestudentdbdataset, as a graph. It conveys infor-
mation about a set of 67 students, their program, contract, and track, as well as one course, the professor
teaching it and the lecture room. Note that the number of student nodes is too large to show here, so we
collapsed them onto one node labelled with an “...”.

node less while it explains 67 fewer edges and contains one more course room which
appears more frequently in the database.
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(genre=Action) (name="Appleford, Russell") (.title="40 Years")
(genre=Action) (name="Wagner, Ben") (title="6:00") 
(genre=Action) (name="Gao, Fawn") (title="9 AM") 

Fig. 16 Three of the most frequent patterns of Smurfig onimdb-3ent-1yearsdatabase.

director(V0N0), directs(V0N0,V1N0), genre(V1N0,Drama)
director(V0N0), directs(V0N0,V1N0), genre(V1N0,Short)
director(V0N0), directs(V0N0,V1N0), genre(V1N0,Comedy)

Fig. 17 Top three most frequent patterns of Farmer onimdb-3ent-1yearsdatabase.

6.3 Comparison with other methods

Here we qualitatively compare with the results of Smurfig (Goethals et al 2010) and
Farmer (Nijssen and Kok 2003) on theimdb-3ent-1yeardataset.

Smurfig patternsWe ran Smurfig with a support threshold of 0.001 to be as inclusive
as possible. To compare with the patterns of RMiner we selected the ones that contain
items from all the three attributes. As pointed out in Sec. 5,each of these patterns can
contain only one attribute value per attribute. Because of the nature of theimdb-3ent-
1yeardataset each of them has absolute support of 1. Figure 16 shows three of these
patterns. Thus, Smurfig is clearly not suited to find relations in relational data of this
kind.

Farmer patternsWe ran Farmer with an absolute support threshold of 1. The pattern
syntax we used had the following form:director(X), directs(X,Y ), genre(Y, g1) . . .
genre(Y, gn) and the key of the search is the atomdirector(X). Figure 17 shows
the top three most frequent of these patterns that contain all three predicates. None of
these patterns contain more than one genre constants, whichis to be expected as the
most frequent rules are bound to be the more general rules. Note that if we found the
directors and titles that satisfy these rules, these patterns would correspond to CCSs.
The difference between Farmer patterns and CCSs is analogous to the difference be-
tween itemsets and tiles. Farmer patterns corresponding toMCCSs are expected to
be less frequent as they are more specific.

7 Quantitative Evaluation

In this section we present a quantitative evaluation of our method. We first show that
our interestingness measure indeed ranks high the most interesting patterns. Then
we present how RMiner behaves in term of computation time on artificial data of
different schemas. Finally we present a scalability study of RMiner on real-world
data of increasing number of entities.

When studying the performance of RMiner we always compare itto its prede-
cessor RMinericdm (Spyropoulou and De Bie 2011). As discussed in Sect. 6.3, the
patterns mined by RMiner are qualitatively different than the ones of Farmer (Ni-
jssen and Kok 2003). Therefore a direct comparison of the performance of the two
algorithms would not be fair, since the two tasks are very different.
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7.1 Evaluation of the Interestingness Measure

We investigated how different methods detect artificially embedded MCCS patterns
of different sizes in theimdb-3ent-1yeardata. More specifically, we investigated
how highly the embedded MCCS (or a larger MCCS containing it)is ranked by our
method using the interestingness measure we propose. To compare with Farmer we
checked the rank of the most frequent rule corresponding to this MCCS and, allow-
ing Farmer an advantage due to the different pattern syntax,also the rank of any CCS
containing a smallsubsetof the embedded predicates.

To artificially embed a pattern, we addedk genres,k directors, andk titles to
the database, in such a way that each of thesek genres and directors are connected
to each of thek titles, forming a CCS. As this by itself would create an unrealis-
tic disjoint part of the database, we additionally added random links preserving the
overall connectivity and database statistics. E.g., we randomly added links between
the existing genres and the newly added titles so as to ensurethat, in expectation, the
total fraction of titles each of the existing genres is linked with stays the same. This
is done also between the existing titles and the newly added genres, and similarly for
the directors and titles.

Table 3 shows the rank of the embedded MCCS pattern for increasingk. RMiner
ranks the embedded pattern higher as the number of nodes per entity type increases
and ranks it first when it contains more than just three nodes,showing that RMiner
ranks high even relatively small patterns known to be present in the database.

For Farmer we used the same pattern syntax as in Sec. 6.3. Table 3 shows the rank
of the highest ranked rule including allgenrepredicates in the embedded MCCS,
as well as corresponding to a CCS containing a subset of just two or more of the
embeddedgenrepredicates. Unsurprisingly, Farmer ranks the CCS patternsmore
highly than the more specific and thus less frequent MCCS patterns. However, even
the CCS patterns are ranked much lower than using RMiner.

Table 3 Rank of artificially embedded MCCS pattern inimdb-3ent-1yeardataset with increasing number
of nodesk per entity type.

k 2 3 4 6

RMiner Rank 103 6 1 1
Farmer Rank (MCCS) 121 502 1464 2141
Farmer Rank (CCS) 121 109 125 147

7.2 Computational Evaluation on different schemas

This subsection aims at showing how RMiner behaves on different Entity-Relationship
(E-R) diagrams. We also compare RMiner with its predecessorRMiner icdm (Spy-
ropoulou and De Bie 2011). We produced random datasets basedon the three E-R
diagrams depicted in Figure 18 in the following way. For every entity type we fixed
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Fig. 18 Entity-Relationship diagrams of random datasets.

the number of entities to 500. Then for every relationship type we connect an entity of
one entity type with an entity of the other with varying probability calledconnection
probability.

More specifically we created 10 datasets for every E-R diagram by varying the
connection probabilityin the interval[0.001, 0.01] and computed the running time of
RMiner and RMinericdm for each of the datasets without any constraints. Figure 19
shows a comparison of the running time for increasingconnection probability. The
running time of both algorithms increases exponentially asthe data becomes more
dense. Moreover RMiner is only marginally faster than RMiner icdm in datasets with
E-R 1 and 3 and as fast in datasets with E-R 2. We argue that thisis due to the fact
that random datasets are quite unstructured. This means that they are less likely to
contain entities with shared connected entities which increases the number of closed
patterns that are enumerated. As we show in Table 2 and we willsee in the next
section RMiner always outperforms RMinericdm on real world datasets.
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Fig. 19 Comparison of RMiner with RMinericdm on different E-R diagrams.
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Fig. 20 Comparison of the running time of RMiner on different E-R diagrams.

Figure 20 shows a comparison of the running time of RMiner andFig. 21 a com-
parison of the output size for increasingconnection probabilityon datasets with dif-
ferent E-R diagrams. The output size as well as the computation time increases as the
paths connecting the entity types become longer.
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Fig. 21 Comparison of the output size of RMiner on different E-R diagrams.

Table 4 Scalability Experiment.

RMiner RMiner icdm

Constraints Num. of Num. of Time Space Depth Size of max Time
Entities Patterns (sec) (Mb) MCCS (sec)

(0,0,0) 3,291 583 5,413 5 5 2823 -
8,686 1,134 113,185 11 6 7872 -
51,203 - - - - - -
111,320 - - - - - -
514,323 - - - - - -

(1,1,1) 3,291 491 1.65 5 5 100 20
8,686 980 12 10 6 174 215
51,203 7621 610 51 6 360 5,471
111,320 32,213 2,813 109 8 632 73,944
514,323 253,148 34,758 477 8 632 96,738

(2,2,2) 3,291 3 0.18 5 4 10 549
8,686 23 1.35 10 4 11 8,562
51,203 125 30 50 6 80 -
111,320 420 181 107 7 148 -
514,323 1286 2598 461 7 179 -

(3,3,3) 3,291 0 0.14 4 2 0 1010
8,686 0 1.02 10 2 0 21,938
51,203 0 18 50 2 0 -
111,320 1 121 107 4 11 -
514,323 5 1506 461 7 11 -

7.3 Computational scalability evaluation

The purpose of this subsection is to show how RMiner scales with increasing number
of entities in the dataset and using different constraints.In order to take full advan-
tage of the closure operator we did this scalability study onreal world datasets of
increasing size corresponding to the schema of Fig. 5 of the IMDB Database. More
specifically we took snapshots corresponding to 1 year, 2 years, 10 years, 40 years
and 100 years of films starting from year 1910. Table 4 shows the number of entities
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corresponding to each of these snapshots as well as number ofpatterns, the time,
memory, maximum depth of the search tree and size of the maximum clique we get
from running RMiner on each of these datasets. It also shows the running time of
RMiner icdm on each of these datasets. The ”-”s in the table mean thatthe respective
algorithm did not finish running in 2 days.

From Table 4 we can see that when not using any constraints perentity type the
running time of RMiner increases rapidly with the number of entities, while when
using the constraints it appears to increase linearly in logscale, with a slope approx-
imately equal to 2. When using constraints of even one entityper entity type we can
run RMiner in almost the whole of IMDB Database (100 years of films) in a few
hours. This time reduces to a few minutes when using constraints of at least two enti-
ties per entity type. This is a very useful feature of RMiner as truly relational patterns
are the ones that involve more than two entity types. The factthat the running time
scales poorly when not using any constraints is expected since the task is strictly
harder than running frequent title mining on each of the relationships separately, with
a support threshold of zero.

The space used at run time increases linearly with the numberof entities irre-
spective of the constraints. This is due to the fact that the space complexity of the
algorithm depends on the maximum depth of the search tree (see Sec. 3.5) which, in
these experiments, is a small constant. Even when increasing the input size by two
orders of magnitude the maximum search tree depth only increases by approximately
factor of 3 in the worst case, i.e, when the constraints are (3,3,3). Also, the fact that the
maximum depth of the search tree is never greater than seven,means that the number
of closed CCSs is only up to a small factor larger than the number of MCCSs.

Table 4 also shows the size of the maximum MCCS which gets smaller as the
constraints increase. However, the size of the maximum MCCSalso corresponds to
the maximum depth of the search tree if the closure operator was not used. Comparing
this with the maximum depth of the search tree of RMiner, we can get an idea about
the effectiveness of the closure operator or the compacity of the closed CCSs. As we
can see in Table 4, the maximum depth of the search tree of RMiner is up to three
orders of magnitude smaller than the size of the maximum MCCS.

Comparing RMiner with RMinericdm we see that RMiner always outperforms
RMiner icdm by up to three orders of magnitude, like in the case of constraints of
three entities per entity type and the dataset of 8,686 entities.

Finally, in Sect. 5.1 we described how the problem of mining MCCSs could be
reduced to the problem of mining closed patterns inn-ary relations by taking the
joins of all allowed combinations of relationships and miningn-ary closed patterns
on each one of them. Here we show empirically that this reduction doesn’t scale for
large datasets, by comparing RMiner with DataPeeler (Cerf et al 2009). More specif-
ically, we compared the running time of RMiner for the case of(1,1,1) constraints
with that of DataPeeler on the join of all relationships (notshown in the Table 4).
DataPeeler run to completion for the first three datasets with running times 2.36s,
22.41s, 15,492.6s and after this point it did not run to completion within 2 days.
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7.4 Practical guidance on using RMiner

In Sect. 3.5 we analysed the complexity of the delay between producing two CCSs
and found it to be cubic to the input size. We also argued that in practice the delay is
a product of the input size and a factor related to the densityof the dataset. However,
the total running time depends on the output size which can bevery large in some
cases. As an example, consider the simplest database containing two entity types,
E1 andE2 and a binary relationshipR12 between them. Let’s assume that each of
the entity types contains n entities, and that the binary relationship is as follows:
R1,2 = {{ei, ej} : i 6= j}. For this construction, each of the2n subsets ofE1

together with its neighbors inE2 forms a closed CCS. This is the worst case for
this particular database where the number of closed CCSs (and thus MCCSs) grows
exponentially to the input size.

However, as with all local pattern mining methods, when dealing with data sets
where the actual relationships can be arbitrary, the size ofthe output is not known
until the algorithm runs. Nevertheless, based on our empirical scalability analysis
(Sect. 7.2 and 7.3), we list a few factors that the output sizeand as a result the total
running time, depend on:

– The input size (number of entities): the output size scales polynomially to the
input size (Table 4).

– The density of the data: the output size of RMiner scales exponentially to the data
density (Fig. 21).

– The database schema: The longer paths the schema contains the larger the output
size (Fig. 21).

Given the uncertainty about the output size, we recommend increasing it progres-
sively by making use of the constraints. More specifically, one could start running
RMiner using high values for the constraints (i.e., producing a small output) and con-
tinue by reducing them until the point when RMiner still runswithin an acceptable
amount of time.

8 Discussion and Future Work

Multi-relational data mining is a very promising field as it suggests mining for more
complex patterns than we were able to with frequent itemset mining or frequent sub-
graph mining. A main challenge in this field is the definition of an appropriate and
intuitive pattern syntax in such complex data, and we feel that the notion of a Com-
plete Connected Subset (CCS) as proposed in the current paper is promising due to
its conceptual simplicity, while fully honouring the relational nature of the data. We
further confirmed the promise of CCSs as a pattern syntax by developing an efficient
algorithm for mining all maximal CCSs, and by validating theideas on a number of
artificial and real-life databases.

We see several opportunities for further research. On the algorithmic side, other
approaches for exploring set systems can be worth investigating. As an example, the
algorithm for enumerating all maximal independent sets of an independence system
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proposed in (Lawler et al 1980) seems potentially relevant.If this algorithm can be
adapted for the enumeration of all maximal sets in the intersection of an independence
and a strongly accessible system, then it would be possible to directly enumerate all
MCCSs. A different algorithmic direction could be taken if one considered a dif-
ferent compression of the CCS in the same lines as for examplethe non-derivable
itemsets (Calders and Goethals 2007). For applying this idea to the case of CCSs, the
semantics of this reduction should be investigated and a suitable algorithm should be
developed.

In terms of pattern syntax, MCCSs as defined in this paper allow only for binary
relationships between the entity types. However, in practical relational databases re-
lationships can be of any arity. A new pattern syntax considering relationships of any
arity, would add to the generality of our method. Furthermore the definition of item-
sets and the respective mining algorithms have been extended in order to be fault-
tolerant in the case of noisy data (Poernomo and Gopalkrishnan 2009; Gupta et al
2008). This is important when dealing with real world data, especially experimental,
and would constitute a useful extension of our work.

Finally the maximum entropy framework used in this paper formodelling the
subjective interestingness of patterns allows for incorporating this work into an itera-
tive data mining framework where the interestingness of a pattern is quantified based
on the patterns that the user has already seen (De Bie 2011a).
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