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Abstract

We investigate an equivalence relation on permutations based on the pure

descent statistic. Generating functions are given for the number of equivalence

classes for some restricted sets of permutations avoiding at most one pattern of

length three. As a byproduct, we exhibit a permutation set in one-to-one corre-

spondence with forests of ordered binary trees, which provides a new combinato-

rial class enumerated by the single-source directed animals on the square lattice.

Furthermore, bivariate generating functions for these sets are given according to

various statistics.

Keywords: permutation; equivalence class; pure descent; pattern; Catalan and
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1 Introduction, definitions and notations

Many statistics on permutations have been studied for many years, but two of them
appear more frequently in the literature: the number of descents and the number of
excedances. These two statistics have been introduced by MacMahon [12] and are
closely related since they have the same distribution. However, many more articles deal
with the descents which have links with other fields as the Coxeter group [6] or the
theory of lattice path [9].

Recently [3, 4], two equivalence relations on permutations based on the excedance
and descent statistics have been introduced. The main results of these works consist in
giving generating functions for the number of equivalence classes for several restricted
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sets of permutations such as involutions, cycles, derangements, permutations avoiding
at most one pattern of length three. So, it becomes natural to conduct a similar
study for equivalence relations based on other statistics. It is precisely the aim of this
paper which investigates an equivalence relation based on the pure descent statistic,
first introduced in [5] and formally defined below. Moreover, we show how equivalence
classes are in one-to-one correspondence with certain forests of ordered trees, providing
some links between several statistics on these sets. As a consequence, we exhibit a new
set of pattern avoiding permutations with the same cardinality as the set of single-source
directed animals on the square lattice (see Barcucci and al. [2], Bousquet-Mélou [8] for
two studies concerning directed animals, forests and pattern avoiding permutations).

Now, we present some basic definitions and notations. Let Sn be the set of permu-
tations of length n, i.e., all one-to-one correspondences from [n] = {1, 2, . . . , n} into
itself. The one-line notation of a permutation π ∈ Sn is π1π2 · · ·πn where πi = π(i)
for i ∈ [n]. The graphical representation of π ∈ Sn is the set of points in the plane at
coordinates (i, πi) for i ∈ [n] (see Figure 1).

Let π be a permutation in Sn. A descent of π is an integer i ∈ [n − 1] such that
πi > πi+1. Whenever there does not exist j < i such that πi+1 < πj < πi, we call
it a pure descent. Let D(π) be the set of pure descents in π, and DD(π) be the
set of pairs (πi, πi+1) for i ∈ D(π). By abuse of language, such a pair will be also
called a pure descent. For instance, if π = 1 4 2 7 5 3 8 6 then D(π) = {2, 4} and
DD(π) = {(4, 2), (7, 5)}. In [5, Theorem 1], the authors prove that the number of
n-length permutations with k pure descents is given by the signless Stirling number of
the first kind c(n, k + 1) where c(n, k) satisfies

c(n, k) = (n− 1) · c(n− 1, k) + c(n− 1, k − 1)

with the initial conditions c(n, k) = 0 if n ≤ 0 or k ≤ 0, except c(0, 0) = 1 ([19, 23] and
the sequence A132393 in the Sloane’s on-line encyclopedia of integer sequences [18]).

We define on permutations of the same length the following equivalence relation
based on the pure descent statistic:

π ∼ σ ⇐⇒ DD(π) = DD(σ).

The set of equivalence classes in Sn (resp. in a restricted set R ⊂ Sn) is de-
noted S∼

n (resp. R∼). For instance, the permutations π = 1 4 2 7 5 3 8 6 and
σ = 1 7 5 6 4 2 3 8 belong to the same equivalence class (see Figure 1) because
DD(π) = DD(σ) = {(4, 2), (7, 5)}, and S∼

3 is constituted of the 5 classes {123, 231},
{132}, {213}, {321} and {312}.
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Figure 1: Two permutations π = 1 4 2 7 5 3 8 6 and σ = 1 7 5 6 4 2 3 8 in the same
class with DD(π) = DD(σ) = {(4, 2), (7, 5)}.

A permutation π ∈ Sn avoids the pattern τ ∈ Sk if and only if there is no sequence
of indices 1 ≤ i1 < i2 < · · · < ik ≤ n such that π(i1)π(i2) . . . π(ik) is order-isomorphic to
τ (see [17, 20]). We denote by Sn(τ) the set of permutations of Sn avoiding the pattern
τ . For example, if τ = 123 then 52143 ∈ S5(τ) while 21534 /∈ S5(τ). Many classical
sequences in combinatorics appear as the cardinality of pattern-avoiding permutation
sets. A large number of these results were firstly obtained by West and Knuth [11, 16,
17, 20, 21, 22]. Also, we refer to the books of Kitaev [10], Mansour [14] and Bóna [7].

Later, Babson and Steingŕımsson [1] defined generalized patterns (also called vincular
patterns) where any pair of two adjacent values in the pattern may be underlined, which
means that the corresponding values in the permutation must be adjacent. For instance,
the pattern 231 occurs in the permutation 316452 two times as the subsequences 352
and 452, while the pattern 231 occurs four times.

Moreover, we will consider a barred pattern τ̄ , i.e., a permutation in Sk having a bar
over one value (see [15] for instance). Let τ be the permutation on [k] identical to τ̄ but
unbarred, and τ̂ be the permutation on [k − 1] made up of the k − 1 unbarred values
of τ̄ rewritten to be a permutation on [k− 1]. Then π ∈ Sn avoids the pattern τ̄ if and
only if each pattern τ̂ in π can be expanded into a pattern τ in π where the expanded
value corresponds to the barred value in τ̄ . For instance, the permutation 3241 does
not avoid 213̄ since 41 cannot be expanded into a pattern 213, while 3124 avoids it.

In the following, we will consider permutations avoiding the generalized and barred
pattern 51423, consisting in permutations where any pattern 4123 can be expanded into
a pattern 51423.

The main goal of this paper is to calculate the number of equivalence classes (modulo
pure descents) for some subsets of permutations avoiding at most one pattern of length
three. See Table 1 for an overview of our results.

The paper is organized as follows. In Section 2, we give a one-to-one correspondence
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between S∼
n and the set of noncrossing partitions of [n], proving that the cardinalities

of S∼
n for n ≥ 1 are given by the Catalan numbers (see A000108 in the On-line Ency-

clopedia of Integer Sequences [18]). For the case of permutations avoiding the pattern
231, we prove that any equivalence class contains only one permutation on which we
construct a forest of ordered trees. Also, we prove that Sn(312)

∼ and Sn(321)
∼ are

enumerated by 2n−1 (A011782 in [18]).
In Section 3, we describe a bijection between forests of ordered binary trees with n

nodes and the set Sn(231, 51423), giving a new set of pattern avoiding permutations in
bijection with the single-source directed animals on the square lattice (see Barcucci and
al. [2, 8]). Bivariate generating functions are given for these sets according to various
statistics.

In Section 4, we investigate the equivalence relation on the set Sn(123) of per-
mutation avoiding the pattern 123. We give a constructive bijection between forests
of ordered binary trees and the classes in Sn(123)

∼, proving that the cardinality of
Sn(123)

∼ is also given by the sequence A005773 that counts the single-source directed
animals as above.

Pattern Sequence Sloane an, 1 ≤ n ≤ 9

{}, {231} Catalan A000108 1, 2, 5, 14, 42, 132, 429, 1430, 4862

{312}, {321} 2n−1 A011782 1, 2, 4, 8, 16, 32, 64, 128, 256

{231, 51423} Directed animals A005773 1, 2, 5, 13, 35, 96, 267, 750, 2123

{123} Directed animals A005773 1, 2, 5, 13, 35, 96, 267, 750, 2123

Table 1: Number of equivalence classes for some restricted sets of pattern avoiding
permutations.

2 Enumeration of S∼
n , Sn(231)

∼, Sn(312)
∼ and Sn(321)

∼

In this section, we provide the cardinality of S∼
n , Sn(231)

∼, Sn(312)
∼ and Sn(321)

∼.
Note that if a permutation π avoids the pattern 231 then any descent of π is a pure
descent.

A partition Π of [n] is a collection of non-empty pairwise disjoint subsets, called
blocks, whose union is [n] (see [13]). The standard form of Π is Π1/Π2/ . . ., where
the blocks Πi are arranged in increasing order of their smallest elements, and elements
in a same block are in decreasing order. Let Pn be the set of partitions of [n], and
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NCPn ⊂ Pn be the set of noncrossing partitions, i.e. all partitions Π where there do
not exist four integers p < q < r < s such that p, r ∈ Πi and q, s ∈ Πj with i 6= j.

We associate to a permutation π ∈ Sn the unique partition Π defined as follows.
Two elements x and y, x > y, belong to the same block in Π if and only if there exist i
and j, i < j, such that the pairs (x = πi, πi+1), (πi+1, πi+2), . . . , (πj−1, πj = y) are pure
descents in π. For instance, the two permutations in Figure 1 are associated to the same
partition (in standard form) Π = 1/42/3/75/6/8. Moreover, two permutations in the
same equivalence class (modulo pure descents) are associated to the same noncrossing
partitions. Indeed, let us consider a block Πi = πaπa+1 . . . πb with a < b, πa > πa+1 >
. . . > πb. Since πaπa+1 . . . πb is a subsequence of consecutive pure descents in π, there
is no πc, c < a, such that πc ∈ [πb, πa]. So, let us assume that there is c > b such that
πc ∈ [πb, πa]; then, for the same argument, all elements in the same block as πc are
greater than πb and lower than πa, which implies that there is no πd in the block of πc

such that πd < πb < πc < πa with a < b < c < d. Thus, the partition Π is noncrossing.
Conversely, any noncrossing partition Π of standard form Π = Π1/Π2/ . . . /Πk,

k ≥ 1, is associated to the permutation π = Π1Π2 . . .Πk that avoids the pattern 231.
Indeed, the noncrossing property forces all descents of π to be pure, implying that π
does not contain any pattern 231. As the set NCPn (and also Sn(231)) is enumerated
by the nth Catalan number (see A000108, [18]), we obtain Theorem 1. As an immediate
consequence, equivalence classes in Sn(231)

∼ are singletons, and the set Sn(231) is a
set of representatives of S∼

n .

Theorem 1 The sets S∼
n (resp. Sn(231)

∼), n ≥ 1, are enumerated by the Catalan
numbers.

As a byproduct of Theorem 1, we obtain the cardinalities of Sn(312)
∼ and Sn(321)

∼.
Since Sn(231) is a set of representatives of S∼

n (see Theorem 1), there is a unique
π′ ∈ Sn(231) equivalent to π ∈ Sn(312), and π′ is obtained from the noncrossing
partition associated to π (in standard form) Π = Π1/Π2/ . . . /Πk by deleting all ‘/’, i.e.,
π′ = Π1Π2 . . .Πk. Notice that for any permutation π ∈ Sn(312), a pure descent in π is
necessarily an adjacency, i.e., a descent (πi, πi+1) with πi+1 = πi − 1. Then, any block
Πj , 1 ≤ j ≤ k, is an interval, which implies that π′ avoids also the pattern 312. So, the
set Sn(312)

∼ is in one-to-one correspondence with the set of Sn(231, 312) which induces
Theorem 2 (see Simion and Schmidt [17]). Theorem 3 is obtained mutatis mutandis.

Theorem 2 The sets Sn(312)
∼, n ≥ 1, are enumerated by the 2n−1.

Theorem 3 The sets Sn(321)
∼, n ≥ 1, are enumerated by the 2n−1.
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3 Forests and 231-avoiding permutations

In this section, we establish a constructive bijection between Sn(231) and the set Fn of
forests of ordered trees, i.e. collections of rooted trees in which children of each node are
ordered and the total number of nodes is n. Taking advantage of the recursive definition
of the forests, we exhibit a new set of permutations Sn(231, 51423) having the same
cardinality as the set of single-source directed animals on the square lattice (see [2, 8]
and A005773, [18]). Moreover, we show how the bijection transports various statistics
(see Table 2). As a byproduct, we provide several bivariate generating functions with
respect to the length and these statistics for the two sets Sn(231) and Sn(231, 51423)
(see Table 3).

Let π be a permutation in Sn(231). We construct a forest fπ ∈ Fn as follows: we
cross the graphical representation of π from left to right; if the point (i, πi) is a left-to-
right maximum (that is πi > πj for all j < i), then it corresponds to the root of a new
tree in fπ; otherwise we add an edge between (i, πi) and (j, πj) where j is the rightmost
j < i such that πj > πi. See Figure 2 for an example of this construction.

By construction, the map φ : Sn(231) → Fn defined by π 7→ fπ is injective. Since
Fn is enumerated by the nth Catalan number as Sn(231), we deduce the bijectivity of
φ.
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Π = 8 4 1/2/3/6 5/7/9/13 11 10/12

Figure 2: The permutation π = 8 4 1 2 3 6 5 7 9 13 11 10 12 with its corresponding forest
fπ and the noncrossing partition Π = 8 4 1/2/3/6 5/7/9/13 11 10/12.
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Now we define some statistics on Sn(231) and Fn, and we show how the map φ
establishes a correspondence between them.

For a permutation π ∈ Sn(231), we define:
des(π) = number of descents (which is also the number of pure descents);
ides(π) = number of descents in π−1 (for π ∈ Sn(231), we have ides(π) =des(π));
adj(π) = number of adjacencies, i.e. descent (πi, πi+1) such that πi+1 = πi − 1;
lrM(π) = number of left-to-right maxima, i.e. i ≥ 1 such that πi > πj for all j < i;
rlm(π) = number of right-to-left minima, i.e. i ≥ 1 such that πi < πj for all j > i;
inv(π) = number of inversions, i.e. pairs (πi, πj) with πi > πj and i < j,
lmax(π) = maximum value of the Lehmer code ℓ1ℓ2 . . . ℓn of π, i.e. max1≤i≤n ℓi where
ℓi = |{πj > πi, j < i}|;
lsum(π) = sum of all values of the Lehmer code of π.

For a forest f ∈ Fn, we define
ledg(f) = number of left edges, i.e., leftmost edges among its siblings;
redg(f) = number of right edges, i.e., rightmost edges among its siblings (ledg(f)=redg(f));
nod1(f) = number of nodes with only one child;
ordt(f) = number of ordered trees;
leav(f) = number of leaves, i.e., nodes without child;
vpat(f) = number of vertical paths (a vertical path is a path between a node and one
of its ancestors);
dept(f) = depth, i.e., the maximal length of a vertical path;
inpl(f) = internal path length, i.e., the sum of the lengths of all paths from a node to
the root.

In the following, the notation st will be refer to one of these statistics on the sets
Sn(231) or Fn. According to these definitions, it is straightforward to check that φ
transports these statistics as related in Table 2.

Sn(231) des = ides adj lrM rlm inv lmax lsum

Fn ledg = redg nod1 ordt leav vpat dept inpl

Table 2: Correspondences of statistics by the bijection φ from Sn(231) to Fn.

Using the correspondence between these statistics and taking advantage of the re-
cursive structure of a forest, we derive several bivariate generating functions for two
sets of pattern avoiding permutations with respect to the length and the statistics st.
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Theorem 4 For any statistic st defined above, second column of Table 3 provides the
bivariate generating function where the coefficient of znyk is the number of permutations
π ∈ Sn(231) with st(π) = k.

Proof. Let F (x, y) be the generating function where the coefficient of znyk is the number
of forests f ∈ Fn with st(f) = k. Since a forest f ∈ Fn is a collection of ordered trees,
we have F (z, y) = 1

1−T (z,y)
where T (z, y) is the generating function for the number of

ordered trees with respect to the length and the statistic st. Now, using the fact that
a nonempty ordered tree is a node connected to the roots of the trees of a forest, we
easily derive functional equations for each statistic st:

- for ledg, redg and dept, T (z, y) = zy(F (z, y)− 1) + z;
- for nod1, T (z, y) = zyT (z, y) + z(F (z, y)− T (z, y));
- for ordt, T (z, y) = zyF (z, 1);
- for leav, T (z, y) = z(F (z, y)− 1) + zy;
- for vpat and inpl, T (z, y) = z(F (zy, y)− 1) + z.
A simple calculation (using Maple for instance) completes the proof. 2

Theorem 5 The sets Sn(231, 51423), n ≥ 1, are enumerated by the number of single-
source directed animals on the square lattice (A005773, [18]), and for any statistic st,
third column of Table 3 provides the bivariate generating function where the coefficient
of znyk is the number of permutations π ∈ Sn(231, 51423) with st(π) = k.

Proof. Let Gn ⊂ Fn be the set of forests of ordered binary trees, i.e., ordered trees
where each node has at most two children. Let us prove that we have φ−1(Gn) =
Sn(231, 51423). Let π be a permutation in Sn(231, 51423) and fπ = φ(π). Since π
avoids 51423, any pattern 4123 can be expanded into a pattern 51423 which implies
that the corresponding forest fπ does not contain a node with more than two children.
Conversely, if the forest fπ belongs to Gn, then the degree of any node of f is at most
two. Let us suppose that π contains the pattern 4123 on πiπi+1πjπk, i+ 1 < j < k. If
there does not exist ℓ, i+ 1 < ℓ < j such that πk < πℓ < πi, by construction the forest
fπ has the node πi with at least three children πi+1, πj and πk. So, any pattern 4123 in
π can be expanded into a pattern 51423, which proves that π avoids 51423.

Let G(x, y) be the generating function where the coefficient of znyk is the number
of forests f ∈ Gn with st(f) = k. Since a forest f ∈ Gn is a collection of the ordered
binary trees, we have G(z, y) = 1

1−R(z,y)
where R(z, y) is the generating function for the

number of ordered binary trees with respect to the length and the parameter st. Now,
using the fact that a nonempty ordered binary tree is a node connected to the roots
of at most two ordered binary trees, we can easily derive functional equations for each
statistic st:

8
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- for ledg, redg and dept, R(z, y) = z + zyR(z, y) + zyR(z, y)2;
- for nod1, R(z, y) = z + zyR(z, y) + zR(z, y)2;
- for ordt, R(z, y) = zy + zyR(z, 1) + zyR(z, 1)2;
- for leav, R(z, y) = zy + zR(z, y) + zR(z, y)2;
- for vpat and inpl, R(z, y) = z + zR(z, y) + zR(z, y)2.
A simple calculation (using Maple for instance) completes the proof. 2

st Sn(231) Sn(231, 51423)

{} Catalan (A000108, [18]) Directed animals (A005773, [18])

des, ides, lmax
1−z+zy−

√
z2y2−2 z2y+z2−2 zy−2 z+1

2zy
2yz

3 yz−1+
√

y2z2−4 yz2−2 yz+1

adj
1−zy+z−

√
z2y2+2 z2y−3 z2−2 zy−2 z+1

2z
2z

2z−1+yz+
√

y2z2−2 yz−4 z2+1

lrM 2
2−y+y

√
1−4z

2z
yz−y+2 z+y

√
−3 z2−2 z+1

rlm
1+z−zy−

√
z2y2−2 z2y+z2−2 zy−2 z+1

2z
2z

3 z−1+
√

−4 yz2+z2−2 z+1

inv, lsum F (z, y) = 1
1−z(F (zy,y)−1)−x

{

R (z, y) = z + zR (yz, y) + zR (yz, y)2

G(z, y) = 1
1−R(z,y)

Table 3: Generating functions for Sn(231) and Sn(231, 51423) with respect to the length
and the statistic st.

Notice that for inv and lsum, functional equations provide generating functions as
continued fractions instead of closed forms.

4 Enumeration of Sn(123)
∼

In this section we prove that the set Sn(123)
∼ is enumerated by the number of single-

source directed animals on the square lattice (A005773, [18]). To achieve this, we
construct a bijection between Sn(123)

∼ and the set of forests of ordered binary trees,
i.e., trees where nodes have at most two ordered children (if a node has only one child
then we call 0-edge the corresponding link, and if a node has two children then the two
corresponding links are called 0-edge and 1-edge, which defines an order on siblings).

A run of pure descents (also called run for short) in π = π1 . . . πn ∈ Sn is a maximal
subsequence πiπi+1 . . . πj , 1 ≤ i ≤ j ≤ n, of successive pure descents, i.e. (πk, πk+1)
is a pure descent for i ≤ k ≤ j − 1, and the two pairs (πi−1πi), (πjπj+1) are not pure
descents (a run contains at least one entry, that is πi). To any run R of π ∈ Sn, we
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associate the interval I(R) = [a, b] ⊆ [n] where a and b are the extremities of R, that is
a = minR and b = maxR.

In a permutation π ∈ Sn(123), there do not exist three runs R, S and T such that
I(R) ⊂ I(S) ⊂ I(T ) (otherwise a pattern 123 would be created on the three entries
minT,minS and minR). So, whenever there are two runs S, R such that I(S) ⊂ I(R),
we will say that S is a secondary run, and S appears necessarily in π at the right of
R. A run R that is not secondary will be called primary. The family of intervals I(R)
associated to the primary runs of π ∈ Sn(123) forms a partition of [n]. We denote
by p ≥ 1 the cardinality of this partition, and let Ii, 1 ≤ i ≤ p, be the ith interval
(considered in decreasing order), and let Pi be its associated primary run (I(Pi) = Ii).
For 1 ≤ i ≤ p, let Li be the restriction of π to the interval Ii. It can be decomposed as
Li = PiS

1
i S

2
i . . . S

si
i where Pi is the ith primary run of π, Sj

i is the jth secondary run of
the interval Ii and si is the number of secondary runs in Li.

We say there is a break between two consecutive secondary runs Sj
i and Sj+1

i in Li if
minSj

i = 1+maxSj+1
i . We refer to Figure 3 for an illustration of such a decomposition.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
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14 }L1 = P1

}L2 = P2S
1
2S

2
2

}L3 = P3S
1
3S

2
3

}L4 = P4

Figure 3: Illustration of the decomposition into runs of the permutation π =
12 8 14 13 7 5 3 11 10 2 1 9 6 4; P1 = 14 13, P2 = 12 8, S1

2 = 11 10, S2
2 = 9, P3 = 7 5 3,

S1
3 = 6, S2

3 = 4, P4 = 2 1. A break occurs between the two consecutive secondary runs
S1
2 and S2

2 .

With the above definitions we have Lemma 1.
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Lemma 1 Let π ∈ Sn(123) and 1 ≤ i ≤ p. If there is a break between two consecutive
secondary runs Sj

i and Sj+1
i in Li, then there exists a unique primary run Pk between

Sj
i and Sj+1

i in the one-line notation of π, and we necessarily have k > i.

Proof. If there is a break between Sj
i and Sj+1

i , then we have minSj
i = 1 + maxSj+1

i

and (minSj
i ,maxSj+1

i ) is not a pure descent. So, there exists an entry x of π between
Sj
i and Sj+1

i , i.e. Sj
i and Sj+1

i are not contiguous. As π avoids 123, x is necessarily less
than minPi where Pi is the primary run of Li, and it does not belong to a secondary
run. For a contradiction, let us assume that there is two entries x and y, x > y, between
Sj
i and Sj+1

i , that do not belong to the same primary run (we take y maximal such
that x > y). Obviously, x is on the left of y, otherwise it would create a pattern 123
on the entries yxminSj+1

i . Let Pk (resp. Pℓ, ℓ > k) be the primary run that contains
x (resp. y). Since x > y and Pk is on the left of Pℓ, the two primary runs are not
contiguous, and there exists a value z between Pk and Pℓ. The maximality of y implies
that z is either below Pℓ or above Pk, which creates a pattern 123 in both cases. Thus,
we obtain the desired contradiction. 2

Lemma 1 allows us to define an injective map α from the set B of breaks to the
set P of primary runs, where the image by α of a break is the unique primary run
defined in Lemma 1. Moreover, it is easy to check that the map α is increasing, i.e., if
B1, B2, . . . , Br are the breaks of B ordered in decreasing order (from top to bottom in the
graphical representation of π), then the two primary runs Pk = α(Bi) and Pℓ = α(Bj),
1 ≤ i < j ≤ r, satisfy k < ℓ (i.e., Pk > Pℓ, which means that Pk is above Pℓ in the
graphical representation of π). The existence of this increasing map α allows us to
define another increasing map β (possibly equal to α) from B to P:

- β(B1) is the highest primary run below B1 (it always exists since α(B1) is below
B1);

- Let us assume that β is defined on Ui = {B1, . . . , Bi}, i ≥ 1, and β is increasing
such that β(Bj) ≤ α(Bj) for 1 ≤ j ≤ i. Setting Vi = β(Ui), we define β(Bi+1) by the
highest primary run below Bi+1 that does not lie in Vi (it always exists since α(Bi+1)
is below Bi+1 and α(Bi+1) cannot lie in Vi since α(Bi+1) is below α(Bi) and thus, also
below β(Bi)).

A crucial property of β is that it depends only on the set of primary and secondary
runs, which means that two permutations in the same equivalence class provide the
same map β.

Using the map β, we construct a forest χ(π) of ordered binary trees from the graph-
ical representation of π by adding 0-edges and 1-edges between some entries of π using
the following process.

- (i) If (πi, πi+1) is a pure descent, then we add a 0-edge between πi and πi+1.

11



- (ii) If there is break between Sj
i and Sj+1

i , then we add a 0-edge between minSj
i

and maxSj+1
i .

- (iii) If Sj
i is a secondary run and there is no break just before Sj

i , then we add a
1-edge between x and maxSj+1

i where x is the smallest entry greater than maxSj+1
i in

the primary run Pi.
- (iv) If there is a break B between Sj

i and Sj+1
i , then we add a 1-edge between

maxSj
i and max β(B).

At the end of this process, we read the different connected components (rotated
clockwise by π

4
) from top to bottom, and we draw the corresponding trees so that any

0-edge points to the left child and 1-edge points to the right child. See Figure 4 for
an illustration of this construction. Black (resp. blue, red, green) edges come from (i)
(resp. (ii), (iii), (iv)). In what follows, an edge e in χ(π) will be denoted (a, b) where
a and b are the extremities of e such that a is the parent of b.

Since any node in χ(π) has at most two children, χ(π) is a forest of ordered binary
trees. Let T be a binary tree of χ(π). For any node v ∈ T we denote by r(v) (resp.
l(v)) the number of 1-edges (resp. 0-edges) in the path connecting the root of T with
v. We say that a node v is isolated when it has no siblings.

Remark 1 Let e = (a, b) be a 0-edge in χ(π).

• (a, b) is a pure descent in a primary run of π if and only if r(a) is even.

• (a, b) is a pure descent in a secondary run of π if and only if a is isolated and
r(a) is odd.

• There is a break between a and b if and only if a is not isolated and r(a) is odd.

Denoting by rath(v) the binary word consisting of edge labels in the path from the
root to v and using a lexicographical order over such binary words (e.g. 101 > 011,
1 > 01), we define a total order on the set of nodes V in χ(π). For a, b ∈ V , we set

a < b ⇐⇒















either a belongs to a tree before that of b in the forest χ(π),

or

{

r(a) < r(b) or

r(a) = r(b) and rath(a) > rath(b)

(⋆)

where r(a) and is defined before Remark 1. We extend this order for paths v1v2 . . .
where vi and vi+1 are nodes of χ(π) connected by a 0-edge: two disjoint paths v1v2v3 . . .
and u1u2u3 . . . are compared by their heads, i.e.

(v1v2v3 . . .) < (u1u2u3 . . .) ⇐⇒ v1 < u1.

12



Extracting from the forest χ(π) certain subsets of disjoint paths and taking into
account the above order relation, we obtain the following.

Remark 2 The three statements hold:

• The ith primary run Pi in π (ordered from the top) corresponds to the ith maximal
path v1v2v3 . . . of consecutive nodes joined by 0-edges in χ(π) where r(v1) is even.

• The ith secondary run in π (ordered from the top) corresponds to the ith maximal
path v1v2v3 . . . of consecutive isolated nodes joined by 0-edges in χ(π) where r(v1)
is odd.

• The ith break in π (ordered from the top) corresponds to the the ith 0-edge (a, b)
in χ(π) such that r(a) is odd and a is isolated.

Consequence: Let (a, b) be a pure descent in a primary run of π, and e = (a, b) its
associated 0-edge in χ(π). Then, the number of entries of π in the interval ]b, a[, i.e.
a − b− 1, is equal to the number of nodes in the maximal path of 0-edges starting on
the right child of a.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2

3

4

5

6

7

8

9

10

11

12

13

14

2

1

14

13

4 7 10 12 11

9

8

6

5

3

Figure 4: The permutation π = 12 8 14 13 7 5 3 11 10 2 1 9 6 4 and the corresponding
forest with nodes labeled using (⋆) order relation.
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Proposition 1 Let π and π′ be two permutations in Sn(123).
- If π and π′ belong to the same equivalence class, then χ(π) = χ(σ).
- If π and π′ belong to different equivalence classes, then χ(π) 6= χ(σ).

Proof. As we have seen above, the map β depends only on the set of primary and
secondary runs. Thus, our construction applied on two permutations lying in the same
class provides the same forest.

Moreover, if two permutations π and π′ do not belong to the same class then their
sets of primary and secondary runs necessarily differ. Due to the statements of Remark 2
and the above consequence, we deduce easily that χ(π) and χ(π′) are different. 2

Theorem 6 The sets Sn(123)
∼, n ≥ 1, are enumerated by the numbers of single-source

directed animals on the square lattice (A005773, [18]).

Proof. Proposition 1 proves that χ is injective. So, it suffices to show the surjectivity of
χ, i.e., any forest of ordered binary trees is the image by χ of a permutation avoiding
123.

First, we prove that any binary tree can be obtained from a permutation π ∈ Sn(123)
by the above construction. Let T be a binary tree with n nodes. By Remark 2, a
maximal path P of nodes connected by 0-edges in T such that r(P ) is even corresponds
to a primary run of π. Moreover, if a 0-edge e corresponds to a pure descent (a, b) in a
primary run of π, b(e) = a− b−1 is the number of nodes in the maximal path (possibly
reduced to one node) of 0-edges starting on the right child of a.

Then the primary runs of π are entirely determined by the sequence b1b2 . . . bk with
b1 = n and bi = b(e) where e is the ith 0-edge of T (using the (⋆) order relation) such
that r(e) is even. If p is the number of primary runs and Pi is the ith primary run of
π then the sequence P1P2, . . . Pp is decreasing.

Consequently, secondary runs of π take values from [n]\∪p
i Pi, and the breaks corre-

spond to the 0-edges e = (a, b) where a is non-isolated and r(a) is odd, which entirely
determines secondary runs and breaks. If q is the number of secondary runs and Si is
the ith secondary run (using the (⋆) order relation) then the sequence S1S2 . . . Sq is
decreasing.

Now we construct a permutation π avoiding 123 by a shuffle of the two decreasing
sequences P1P2, . . . Pp and S1S2 . . . Sq. We read P1S1S2 . . . Sq from left to right, and
whenever we meet a break between Si and Si+1 we insert between them the first primary
run not yet inserted (this is exactly the correspondence given by the increasing map
β defined above). Obviously, the sequence obtained at the end of the process is a
permutation avoiding the pattern 123 since it is a shuffle of two decreasing sequences.

14
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Finally, the image of π by χ provides the tree T , which means that χ(Sn(123)) contains
the set of all ordered binary trees of size n.

So, let us assume that f is a forest of ordered binary trees T1, T2, . . . , Tk. For
1 ≤ i ≤ k, we construct the permutation πi from the tree Ti by the previous process,
i.e., πi = χ−1(Ti). Let π be the permutation obtained by the skew sum π1⊖π2⊖ . . .⊖πk

where π ⊖ π′ is the permutation σ such that

σ(i) =

{

π(i) +m′ for 1 ≤ i ≤ m,

π′(i−m) for m+ 1 ≤ i ≤ m+m′

where m (resp. m′) is the length of π (resp. π′).
Now we read π1 ⊖ π2 ⊖ . . .⊖ πk from left to right. Whenever a non desirable pure

descent have been created between πi and πi+1, it is easy to see that πi is necessarily a
decreasing sequence. In this case we permute πi and the first primary run of πi+1. At
the end of the process, the permutation π satisfies χ(π) = f . 2

For instance, the previous construction applied on the forest illustrated in Figure
4 provides the permutation π = 12 8 14 13 11 10 7 5 3 9 6 4 2 1. Indeed, we have π1 =
χ−1(T1) = 2 1, π2 = χ−1(T2) = 10 6 9 8 5 3 1 7 4 2 and π3 = χ−1(T3) = 2 1. Since
a non desirable pure descent (13, 12) is created in the permutation π1 ⊖ π2 ⊖ π3 =
14 13 12 8 11 10 7 5 3 9 6 4 21, we permute the two primary runs 12 8 and 14 13, which
gives π = 12 8 14 13 11 10 7 5 3 9 6 4 2 1.

5 Going further

We conclude this paper by giving several open questions and possible research directions.
We obtain experimentally the numbers of classes in Sn(132)

∼ and Sn(213)
∼ for small

values of n, 1 ≤ n ≤ 9. For Sn(132)
∼, we obtain the sequence 1, 2, 4, 10, 26, 66, 169, 437, 1130

and for Sn(213)
∼, we obtain the sequence 1, 2, 4, 9, 22, 56, 146, 388, 1048. The first se-

quence does not appear in [18], while the second sequence seems to be A152225 which
corresponds to the number of Dyck paths of semilength n with no peaks at height
0 mod 3 and no valleys at height 2 mod 3. Is it possible to obtain the generating
functions for these sets and to make a link with Dyck paths?

In [2], the authors give a one-to-one correspondence between the set Fn of forests of
ordered trees and the set Sn(321, 41̄523) that transports various parameters. However,
they do not succeed to give an interpretation for the number of inversions, the degree
of the root less one and the internal-path-length. In Section 2, we exhibit a bijection
between Fn and Sn(231, 51423), which gives a new set of pattern avoiding permutations
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enumerated as the single-source directed animals on the square lattice. This bijection
has the advantage that it transports many parameters (see Section 3), and in partic-
ular the three previous parameters. Is it possible to give an interpretation of these
parameters in term of the single-source directed animals?

In Section 4, we prove that Sn(123)
∼ is enumerated by the number of directed

animals (or equivalently directed polyominoes). Is it possible to give an interpretation
of the equivalence relation in term of polyominoes?
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