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ABSTRACT
An attribute is obligatory for a class in a Knowledge Base (KB), if

all instances of the class have the attribute in the real world. For

example, hasBirthDate is an obligatory attribute for the class Person,

while hasSpouse is not. In this paper, we propose a new way to

model incompleteness in KBs. From this model, we derive a method

to automatically determine obligatory attributes – using only the

data from the KB. Our algorithm can detect such attributes with a

precision of up to 90%.
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1 INTRODUCTION
Recent years have seen the rise of large knowledge bases (KBs).

These include, among others, YAGO, Wikidata, DBpedia, BabelNet,

and NELL on the academic side, and Google’s Knowledge Vault

and Microsoft’s Satori on the industrial side. These KBs contain

millions of entities (such as cities, universities, or famous people),

and billions of facts about them (such as which city is located in

which country, or which scientist works at which university). The

KBs find applications in information retrieval, machine translation,

and question answering.

The usefulness of these applications depends on the data quality

of the knowledge base. One important dimension of quality is the

correctness of the data. But there is another important dimension:

the completeness of the data – i.e., whether or not a statement

about an entity is missing from the KB. Data completeness affects

queries about cardinalities, about existence, and about top-ranked

entities. For example, if the population of Tokyo is missing from

the KB, then a query about the top-10 most populous cities in the

world will return a factually wrong result.

If we knew that every city has to have a population, we could

know that the reason for Tokyo’s missing population is not that

Tokyo does not have a population in the real world, but that the
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number was not added to the KB. We could thus alert the user that

the data on which the query is computed is known to be incomplete.

We say that the population is an obligatory attribute for the class

city. Not all attributes are obligatory. For example, not every city

has to be the capital of a region. The same goes for other classes:

Every person has to have a birth date, but not every person has to

be married.

If we were able to distinguish obligatory attributes from optional

ones, we could see more easily where information is missing in the

KB. This, in turn, could help us qualify the answers to our queries.

Several approaches allow querying incomplete data, if the degree

of completeness is known [13, 15, 18]. The obligatory attributes can

also help the designers of the knowledge base focus their effort on

completing the data. For example, collaborative knowledge bases

such as Wikidata could ask contributors specifically for the oblig-

atory attributes of a new entity. Finally, the obligatory attributes

can give semantics to classes. For example, the characteristics of

actors is that they act in a movie. Such information can help de-

cide whether an entity belongs to a class or not, it can guide the

process of taxonomy design, and it can help define schema con-

straints [11]. We note that even obligatory attributes with a few

counter-examples would be helpful for these goals. For example, it

is good to know that people generally have a nationality – even if

there are some people who do not have one. Our goal is to find the

rule rather than the exception.

It is not easy to determine whether an attribute is obligatory or

not. Today’s KBs contain not just people and cities, but literally

hundreds of thousands of other classes. They also contain hundreds,

if not thousands of attributes. It is thus infeasible to specify the

obligatory attributes manually. It is also hard to find them automat-

ically: In YAGO, e.g., 2% of soccer players have a club – and that is

an obligatory attribute for professional soccer players. At the same

time, 2% of people have a spouse – and that is an optional attribute.

Using the available data to determine obligatory attributes thus

amounts to generalizing from a few instances to all instances of a

class. This is a very difficult endeavor – even for humans. The case

of KBs is even more intricate, because most KBs do not explicitly

say that a statement does not hold in reality. For example, the KBs

do not say that Pope Francis is not married. Rather, they operate

under the Open World Assumption: A statement may be missing

from the KB either because it was not added, or because it does not

hold in reality. Thus, we find ourselves with the task of generalizing

from a few instances in the absence of counter-examples.

In this paper, we present methods that can detect obligatory

attributes automatically. Our key idea is to use the class hierarchy:

Most modern KBs contain extensive class hierarchies (YAGO, e.g.,

contains 650,000 classes; DBpedia and Wikidata have manually
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designed taxonomies). And yet, the KBs use the class hierarchy

mainly to specify domain and range constraints. They do not exploit

the semantics of the hierarchy any further. Our idea is to make use

of the classes to determine obligatory attributes. More precisely,

our contributions are as follows:

• a formal definition of the problem of obligatory attributes

• a probabilistic model for the incompleteness of a KB

• an algorithm that can determine obligatory attributes auto-

matically

• extensive experiments on different datasets with different

competitors, showing that obligatory attributes can be de-

tected with a precision of up to 90%.

This paper is structured as follows. We first discuss related work

in Section 2 and the preliminaries in Section 3. Then we present

the formal definition of our problem in Section 4, and our approach

in Section 5. Section 6 presents experiments, before Section 7 con-

cludes.

2 RELATEDWORK

Query Completeness. Much recent work [13, 15, 18] has investi-

gated the completeness of queries when the completeness of the

data is known. These approaches are orthogonal to our work, which

aims to establish whether the data is complete in the first place.

Measuring Incompleteness. Several studies have confirmed that

KBs are incomplete. A watermarking study [20] reports that 69%–

99% of instances in YAGO and DBpedia lack at least one property

that other entities in the same class have. In Freebase, 71% of people

have no known place of birth, and 75% have no known national-

ity [3]. Wikidata is aware of the problem of incompleteness, and

has developed tools to specify completeness [4], as well as tools to

manually add completeness information [2]. Unlike our work, these

approaches do not aim at determining completeness automatically.

Determining Incompleteness. Closest to our work, several ap-

proaches have recently taken to measure the incompleteness in

knowledge bases [7, 19]. However, these works determine whether

a particular subject (such as Emmanuel Macron) is incomplete with

respect to a particular attribute (such as birthDate). Our work, in

contrast, aims at determining whether an attribute is obligatory or

not for a given class. It thus operates on the schema level.

Schema Mining. Other work has investigated the more general

problem of schema mining [1, 8, 10, 17, 22]. The work of [17] mines

domain and range constraints for relations. Our work, in contrast,

mines relations that are obligatory for classes. [10] uses machine

learning to find OWL class descriptions. However, they rely on

negative facts given by the user, or on prior knowledge about the

schema – while we require none of these. [22] mines Horn rules

on a KB. However, this approach is not targeted towards sparse

obligatory attributes. We use it as a baseline in our experiments.

[8] also mines Horn rules, and can deal with sparse data. At the

same time, it cannot mine rules with existential variables in the

head. Any such rule would trivially have a confidence of 100% in

their model, because the model makes the Partial Completeness

Assumption. Another work [1] mines definitions of classes. This

approach comes closer to our goal, but is not exactly targeted to-

wards obligatory attributes. We use such an approach as a baseline

in our experiments.

3 PRELIMINARIES

Knowledge Bases. We are concerned with KBs such as YAGO,

DBpedia, and Wikidata. These use a set I of instances (such as

Macron or the year 2017 )
1
and a set P of property names (such as

presidentOf ). We assume that P contains for every p ∈ P also its

inverse p−. Furthermore, in all of the following, we assume that I

and P are fixed and global sets. In this context, a KB can be seen as a

set K ⊆ I ×P ×I of facts (such as ⟨Macron, presidentOf, France⟩).
Each fact consists of a subject s ∈ I, a property p ∈ P, and an

object o ∈ I, and we write it as p(s,o). We assume that for every

p(s,o) ∈ K , we also have p−(o, s) ∈ K . A property p is a function

in a KB K , if it has at most one object for each subject. Each KB

K also defines a set CK ⊆ 2
I
of named classes (such as Person or

President).

Ideal KB. For our problem, we consider a (hypothetical) ideal KB

W, which contains all facts of the real world. With this, our work

is in line with the other work in the area [7, 13, 15, 18, 19], which

also assumes an ideal KB. The problems of determining how such

a KB could look are discussed in [19].

A knowledge base K is correct if K ⊆ W and it is complete if

W ⊆ K . The assumption that the KB is complete is called the

Closed-World Assumption (CWA):

∀r ,a,b : r (a,b) < K ⇒ r (a,b) <W (1)

The CWA is too strong in practice. The Partial Completeness As-

sumption (PCA) [8] states that if a KB K knows a fact about an

instance, then it knows all facts with the same property about the

instance:

∀r ,a,b,b ′ : r (a,b) ∈ K ∧ r (a,b ′) < K ⇒ r (a,b ′) <W (2)

Finally, the Open-World Assumption (OWA) states that nothing fol-

lows from the absence of a fact in the KB, i.e., the absence of evi-

dence is not evidence of absence.

Generalization Rules. The subject set pK of a property p in a

knowledge base K is the set of all instances that have the property

p in K : pK = {x |∃y : p(x ,y) ∈ K}. A generalization rule for a

KB K is a formula of the form A ⊆ B, where A and B are classes

of K , subject sets of K , or intersections thereof. For example, if

PresidentW is the class of presidents in the real world, then the

following generalization rule says that all presidents are presidents

of some country:

PresidentW ⊆ presidentOfW

With this, we can already make a simple observation:

Proposition 1 (Heredity). In any KB K , for every class cK ∈ CK ,

any subclass sK ⊆ cK , and every property p: if cK ⊆ pK then sK ⊆

pK .

1
For our work, we do not distinguish literals and instances.



This proposition tells us that if a generalization rule holds for a class,

it also holds for all subclasses. The confidence of a generalization

rule is defined as

conf(A ⊆ B) =
|A ∩ B |

|A|

Finally, we can make a second simple observation:

Proposition 2 (Separation). If cK ⊆ pK for some class cK of some

KB K and some property p, then the following holds for any class c ′K
of K :

conf(cK ∩ pK ⊆ c ′K ) = conf(cK ⊆ c ′K )

4 MODEL
4.1 Problem Definition

Goal. In this paper, we aim to find generalization rules of the form

cW ⊆ pW . Such a rule says that every instance of cW must have

the property p in the real world. We call p an obligatory attribute of

the class c . For example, we aim to mine

FilmW ⊆ directed
−
W

Here, directed
−
is an obligatory attribute for the class Film, i.e.,

every film has to have a director. The difficulty is to find such a

rule in W by looking only at the data of a given KB K . In the

following, we write cW for the class c in the real world, and cK for

the corresponding class in K .

Baseline 1. One way to find obligatory attributes is assume that

the KB is complete (Closed World Assumption) and correct. Under

these assumptions, we can predict that an attribute p is obligatory

for a class c if and only if all instances of c have p in the KB K :

(cK ⊆ pK )
?

⇒ (cW ⊆ pW )

This is how a rule mining system under the Closed World As-

sumption would proceed [22], if applied naively to our problem. In

practice, however, KBs are rarely complete. They operate under the

Open World Assumption. There will be hardly any property p that

all instances of class c have.

Baseline 2. Another method would be to predict that an attribute

p is obligatory for a class c , if the corresponding generalization rule

has a confidence above a threshold θ in the KB K :

conf(cK ⊆ pK ) ≥ θ
?

⇒ (cW ⊆ pW )

For example, if more than 90% of presidents in K have the property

presidentOf, then we would predict that presidentOf is an obligatory

attribute for the class of presidents. The problem is that an attribute

may be very prevalent without being obligatory. For example, many

film directors also acted in movies – but acting in a movie is not an

obligatory attribute for film directors.

Baseline 3. Yet another idea (inspired by [1]) is to make use of

the taxonomy. Given a property p and a KB K , we can find the

lowest class cK of the taxonomy such that nearly all instances with

p fall into that class. This is motivated by the contraposition of

Person

Child

=hasSpouse

Actor

Director

=actedIn

Figure 1: Examples of attributes and classes.

Proposition 2. Formally, the method predicts that, for any property

p, for any class cK of a KB K , and for a threshold θ :

conf(pK ⊆ cK ) ≥ θ ∧

∀c ′K ⊂ cK : conf(pK ⊆ c ′K ) < θ

?

⇒ (cW ⊆ pW )

This approach will work well for properties whose domain is a class,

such as the property presidentOf with the class President. However,

it will work less well if the attribute applies to only a subset of the

class. For example, every person x with ∃y : hasSpouse(x ,y) ∈ K
belongs to the class Person. Thus, the above confidence will be 1

for hasSpouse and Person, and the method will conclude that every

person is married.

4.2 Our Approach
Our idea is based on the assumption that the incompleteness of the

KB is distributed equally across all classes of the KB. If we find a

class that has a very low density of an attribute (while others have

a high density), then we conclude that this low density indicates

that the attribute is not obligatory for that class.

As an example, consider the class of all adult people (i.e., all

persons without the class of children, Figure 1). The attribute has-

Spouse is much more prevalent in that class than in the class of

children. It is unlikely that all missing hasSpouse facts in the class

Child are due to incompleteness. Therefore, we can conclude that

not all children are married in the real world. This means that has-

Spouse cannot be obligatory for Child (and, hence, not for Person).

Now consider the example in Figure 1 on the right. Some in-

stances of the class Director have the attribute actedIn. However,

the density of that attribute increases if we consider the intersection

of Director with Actor. Hence, actedIn cannot be obligatory for the

class Director.

We will now show how to formalize this idea, and under which

conditions we can guarantee that an attribute is not obligatory for

a class.

4.3 Assumptions
In order to deduce formal statements about obligatory attributes

in the real world from our KB K , we have to make a number of

assumptions about K .

Assumption 1 (Correctness of the KBK ). Every fact that appears
in the KB K also appears in the ideal KBW: K ⊆ W.

This assumption basically says that the KB does not contain wrong

statements. This is a strong assumption, which may not hold in

practice [5, 21]. However, we use it here mainly for our theoretical

model. Our experiments will show that our method works even



if there is some amount of noise in the data. We make a second

assumption:

Assumption 2 (Class Hierarchy of the KB K ). The classes of the
KB K are correct and complete, i.e., CK = CW .

Again, this is a strong assumption that we use mainly for our theo-

retical model. In practice, three types of problems can appear. First,

an instance can belong to a wrong class in the knowledge base.

Second, an instance may be tagged with a too general class (e.g.,

Macron belongs to Person, but not to President). Finally, a class may

be missing altogether (such as SciencesPoAlumni forMacron). These

problems impact our method, as we discuss in Section 6.5. However,

for Wikidata, the class system that we use appears sufficiently com-

plete and correct to make our method work. For YAGO, the data is

known to be highly accurate [21], and furthermore, the Wikipedia

categories are included in the class hierarchy. This makes the hi-

erarchy sufficiently complete for our method to work. In DBpedia,

in contrast, each instance is tagged with only one class. This re-

sults in so much incompleteness that our method cannot work. For

example, in DBpedia, the proportion of singers who wrote a song

is higher than the proportion of song-writers who wrote a song.

This indicates that many singers should actually (also) be tagged as

song-writers – which they are not.

Assumption 2 allows us to omit the subscript from the classes

from now on. With Assumptions 1 and 2, we can already show:

Proposition 3 (Upper bound for Confidence). Under Assump-

tions 1 and 2,

conf(c ⊆ pK ) ≤ conf(c ⊆ pW )

for any KB K , any class c , and any property p.

This proposition holds because Assumption 1 tells us that x ∈ pK
implies x ∈ pW . Furthermore, Assumption 2 tells us that the classes

of K are the classes of W.

4.4 Random sampling model
Our method assumes that the incompleteness of the KB is evenly

distributed. More formally, let us consider the space of all possi-

ble KBs under Assumption 1. These are Ω = 2
W

. We assume a

probability distribution P(·) over this space. Given a property p
and instances s,o, the statement p(s,o) ∈ K becomes a boolean

random variable defined on a KB K , and we denote it by p(s,o). In
the same way, the expression |pK ∩c | becomes a numerical random

variable defined on a KB K , and we denote it by |p ∩ c |. Likewise,
conf(c ⊆ pK ) becomes a numerical random variable, and we denote

it by conf(c ⊆ p). We constrain P(·) by the following assumption:

Assumption 3 (Random sampling). On the space of all KBs in

Ω = 2
W

, there exists a probability lp for each property p such that:

∀x ,y.P(p(x ,y)) =
{
lp , if p(x ,y) ∈ W

0, otherwise

The second case follows from Assumption 1. The first case states

that facts with the property p in our KB come from a uniform

random sampling of all true facts with property p in the real-world.

Several factors can thwart this assumption. First, the KB may be

biased towards popular instances. For example, Wikipedia contains

more information about American actors than about Polish actors,

and people magazines are more concerned about the extra-marital

affairs of actors than about the affairs of an architect. Thus, any

KB that extracts from these sources will be biased. Second, the

information extraction itself may have a bias. For example, several

information extraction methods feed from the Wikipedia infoboxes.

These infoboxes come in a number of pre-defined templates, and

these templates define the properties. This entails that the presence

or absence of a property in the KB depends on whether the instance

happens to belong to an infobox template that defines this prop-

erty or not. That said, making such simplifying assumptions about

the probability distribution of facts is not unusual [3, 12, 16]. Our

experiments will show that our model works also in cases where

this assumption is violated to some degree.

We constrain P(·) further by adding in the PCA (Equation 2).

Assumption 4 (PCA). On the space of all KBs in Ω = 2
W

,P(K) = 0

if there exists a property p (which is not an inverse) and instances

x ,y,y′ with p(x ,y) ∈ K ,p(x ,y′) < K and p(x ,y′) ∈ W.

The PCA is a common assumption for the KBs we consider [3, 8]. It

has been experimentally shown to be correct in a large number of

cases [9]. Again, we need the PCA mainly for our model. Our exper-

iments will show that our method gracefully translates to scenarios

where the PCA does not hold for all properties. In particular, our

method is robust enough to work also with the inverses of proper-

ties, for which the PCA usually does not hold. In the appendix, we

prove:

Theorem 1 (Random sampling under PCA). Under Assumptions 3

and 4, for each property p with probability lp (as given by Assump-

tion 3),

∀x : P(∃y : p(x ,y)) =

{
lp , if x ∈ pW
0, otherwise

Theorem 1 tells us that the truth value of ∃y : p(x ,y) ∈ K for an

instance x in a KB K can be seen as a random draw of a Bernoulli

variable with a parameter lp . This allows us to derive

|p ∩ c | ∼
∑

x ∈c,x ∈pW

Bernoulli(lp ) = Binom(|pW ∩ c |, lp )

This allows for the following proposition.

Proposition 4 (Biased estimator). The confidence of a generaliza-

tion rule in Ω follows a binomial distribution divided by a constant:

conf (c ⊆ p) ∼
Binom(|c ∩ pW |, lp )

|c |

Hence, the expected confidence of the rule in Ω is a biased estimator

for the confidence of the rule inW:

E[conf (c ⊆ p)] = lp × conf (c ⊆ pW )

This proposition confirms that, in our model, the confidence of

c ⊆ pW cannot be estimated from the data in our KB alone, as long

as lp remains unknown. The proposition also allows us to predict

the behavior of Baseline 2 with parameter θ (see again Section 4.1).

For a predicate p, if θ > lp , then the baseline is less likely to find all

the correct classes for the predicate p, but the classes it finds have
a high probability of being correct. We show in the appendix:



Proposition 5 (Unbiased estimator). Given two classes c, c ′ and a
property p, the expected confidence of c ∩ p ⊆ c ′ in Ω is an unbiased

estimator for the confidence inW:

E[conf (c ∩ p ⊆ c ′)] = conf (c ∩ pW ⊆ c ′)

This proposition finally establishes a link between the (expected)

observed confidence in our KB and the confidence in the real world.

5 ALGORITHM
In this section, we first define our main indicator score for obliga-

tory attributes. We then present our algorithm and propose some

variations of this algorithm.

5.1 Confidence Ratio
Our main indicator score for obligatory attributes is defined as

follows:

Definition 1 (Confidence ratio). Given a KB K , a property p, and
two classes c and c ′ with |c ∩ c ′ | , 0 and |c \ c ′ | , 0, the confidence

ratio is

sKp (c, c ′) =
conf(c \ c ′ ⊆ pK )

conf(c ∩ c ′ ⊆ pK )

This expression compares the ratio of instances with p in c ∩ c ′ to
the ratio of instances with p in c \ c ′. It represents the influence of
being in the class c ′ for the instances of a class c on p. This ratio is

similar to the relative risk that is used in clinical tests. We can now

make the following observation (which we prove in the appendix):

Proposition 6 (Main observation). If p is an obligatory attribute

for some class c , then for every class c ′ with |c∩c ′ | , 0 and |c \c ′ | , 0,

E[sp (c, c
′)] = 1

Here, sp (c, c
′) is a random variable, and hence does not carry the

K . The observation tells us that the density of p in c should not

be influenced by c ′ if p is obligatory for c . The probability of a KB

where c ′ influences p is low in our probability space.

Measure instability. Our confidence ratio estimate will suffer

from instability when the expected number of instances with a

property p in an intersection is inferior to 1. In that case, there

might be no instance with the property p in the intersection, and

the confidence ratio will be infinite. In practice, this happens in

small intersections for highly incomplete properties. Therefore, we

decide to consider only stable classes. Given a class c and a property
p in a KB K , an intersecting class c ′ is stable if either the expected
number of instances (conf(c ⊆ pK ) × |c ∩ c ′ |) or the actual number

(|c ∩c ′∩pK |) is at least 1. The same has to hold for class differences.

5.2 Algorithm
Proposition 6 allows us to make statements about a generalization

rule c ⊆ pW in the real world purely by observing an incomplete

knowledge base K . All we have to do is to check the classes c ′ that
intersect with the class c . If the ratio of instances of pK in c ∩ c ′

is very different from the ratio in c \ c ′, then it is very unlikely

that c ⊆ pW holds. Furthermore, if sKp (c ′, c) ≫ 1, then p cannot be

obligatory for c ∩ c ′. Thus, it cannot be obligatory for c and c ′.
These considerations give us Algorithm 1. This algorithm takes

as input a KB K , a class c , and a property p. The algorithm also

uses two thresholds: θ is the margin that we allow sKp to deviate

from 1. The larger the threshold, the more obligatory attributes the

algorithm will find – and the more likely it is that some of them

will be wrong. The threshold θ ′ is the minimum support allowed

for the rule c ⊆ p to be considered. In practice, we set θ ′ to 100,

as in AMIE [8]. Our algorithm returns false if the generalization

rule c ⊆ pW should be rejected – either because the support is too

small (Lines 1-2), or because there is a stable intersecting class c ′

with sKp (c, c ′) , 1 (Lines 4-5), or sKp (c ′, c) ≫ 1 (Lines 6-7). If neither

is the case, the algorithm returns true.

Caveat. Our algorithm will return true if it finds no reason to reject

a class. This, however, does not necessarily mean that the attribute

is obligatory in this class. In particular, our algorithm may perform

poorly if there is no class where the attribute is obligatory. However,

our experiments show that despite this caveat, the method works

well in practice.

Algorithm 1: ObligatoryAttribute
Input: KB K , class c , property p, threshold θ ,

threshold θ ′ = 100

Output: true if c ⊆ pW is predicted

1 if |c ∩ pK | < θ ′ then
2 return false

3 for stable class c ′ do
4 if |loд(sKp (c, c ′))| > loд(θ ) then
5 return false

6 if loд(sKp (c ′, c)) > loд(θ ) then
7 return false

8 return true

Example.Consider again the second example in Figure 1. On YAGO

data, we obtain:

sYAGO
actedIn

(Director,Actor) = 0

This means that directors are unlikely to act in a movie if they are

not also actors. Thus, our algorithm will reject the hypothesis that

actedIn would be obligatory for the class Director . We also obtain

sYAGO
actedIn

(Actor,Director) = 0.77

Since this value is closer to 1, we understand that actors act no

matter whether they are also directors or not. Hence, the classActor

will be accepted for thresholds θ above
1

0.77 ≈ 1.3.

5.3 Variations

Relaxation. In practice, classes in a KB intersect only in small

areas. Thus, when sKϕ (c, c ′) ≫ 1, we decided to reject only c ′. In

this relaxed variant, the condition in Line 4 of Algorithm 1 becomes

loд(sKp (c, c ′)) < −loд(θ ).

Fisher’s Exact Test. We also experimented the Fisher’s Exact

Test [6] instead of the confidence ratio. We replace the logarithm

of the confidence ratio s in Line 4 of Algorithm 1 by the probability



that c ∩ c ′ has higher values, and in Line 6 with the probability that

it has lower values over the set of possible contingency tables with

fixed marginals.

6 EXPERIMENTS
In this section, we evaluate our approach experimentally on large

real-world KBs. We first evaluate our approach on YAGO, a KB

for which we know that our Assumptions 1 and 2 hold by and

large. Then, we submit our approach to a stress test: We run it on

Wikidata, where less is known about our assumptions. Finally, we

investigate how our approach could be generalized to composite

classes.

6.1 Datasets

YAGO.We chose the YAGO3 knowledge base [14] for our experi-

ments, because the data is of good quality (Assumption 1) and the

taxonomy is extensive (Assumption 2). We use the facts of all in-

stances, the full taxonomy, and the transitive closure of types. With

this, our dataset contains more than 5 million instances and around

54,000 classes with more than 50 (direct or indirect) instances.

Wikidata. As a stress-test, we also evaluated our approach inWiki-

data, where less is known about our Assumptions 1-4. We used

the version from 2017-06-07, which contains more than 16,000

properties. This makes a manual evaluation impractical. Hence,

we reduced the dataset to only people. However, all people are in

only one class: Human. Therefore, we used the occupation property

(P106) to define classes. For example, in Wikidata, Elvis Presley

(Q303) has the occupations FilmActor, Actor, Singer, Screenwriter,

Guitarist and Soldier. These occupations form their own hierarchy,

which we use as class hierarchy. For example, FilmActor is a sub-

occupation of Actor, and thus becomes a subclass of it. This subset

of Wikidata contains 1023 classes, around 1.6 million instances, and

2569 properties.

6.2 Gold Standard
Since our problem is novel, there is no previously published gold

standard for it. Therefore, we had to construct a gold standard man-

ually. For YAGO, we considered 68 properties (37 properties and

their inverses), we determined the classes where more than 100

instances have the property, and we manually evaluated whether

the attribute is obligatory or not. For Wikidata, we randomly se-

lected 100 properties, and evaluated the output of each method

manually. Our manual evaluation gives us an estimate for precision.

Since Baseline 3 has a recall of 100% at maximal θ , we can use it to

estimate our recall.

It is not always easy to determine manually whether an attribute

is obligatory. For example, consider the attribute isAffiliatedTo. Is it

obligatory for an artist to be affiliated to a museum, for a football

player to be affiliated to a football club, or for people in general to

be affiliated to their relatives? For our gold standard, we restricted

ourselves to cases where we could clearly establish whether an

attribute is obligatory or not, and removed all other cases.

Another problem arises for classes where the huge majority of

instances have a particular attribute. For example, should we discard

hasNationality as an obligatory attribute for Person because there

exist stateless people? In such cases, we decided that the absence of

the attribute is an exception to the rule that our method should not

predict. Hence, we considered hasNationality obligatory. A related

problem is that an attribute may not necessarily be obligatory for

a class, but that de facto all instances have it. For example, we

expect all instances of the class RomanEmperor to be dead by now,

but what if a renewed Roman empire arises in the future? In such

cases, we considered an attribute obligatory if de facto all known

instances have it.

We constructed our gold standard according to these principles,

and refer the reader to [19] for a more detailed discussion of such

evaluations. All our datasets, as well as the gold standard and the

evaluation results, are available at https://suchanek.name/work/

publications/www-2018-data.

6.3 Evaluation Metric
The most intuitive way to evaluate the prediction of obligatory

attributes would be to consider each predicted pair of a class and

an attribute, and to compare this set to the gold standard. However,

this comparison would not take into account the size of the class.

For example, it is more important to predict that all organizations

have a headquarters than that all Qatari ski champions have a

gender, because there are many more of the former than of the

latter. However, weighting each class by the number of instances

causes another problem. Consider, e.g., the classesMan andWoman,

which partition the class Person in our data
2
. If we predict that an

attribute is obligatory for Man and forWoman, but not for Person,

we would obtain a recall of only 50% – even though we predicted

the attribute correctly for all instances.

To mitigate this problem, we compare, for each class c and for

each property p, the actual set of predicted instances with the

instances in the gold standard, i.e., we compare

Pp = {x ∈ c |c ⊆ pW predicted by our algorithm}

with

Gp = {x ∈ c |c ⊆ pW in the gold standard}

The true positives are the instances in the intersection of these sets.

Then we compute the precision and recall as follows:

precision =

∑
p |Pp ∩Gp |∑

p |Pp |

recall =

∑
p |Pp ∩Gp |∑

p |Gp |

The F1-measure is computed as the harmonic mean of these.

6.4 YAGO Experiment
We ran all three baselines (Section 4) as well as our approaches

(Section 5) on our YAGO dataset. Figure 2 shows the recall over the

precision for each approach, with varying threshold θ .

Baseline 1. Recall that this baseline (inspired by [22]) labels an

attribute as obligatory in a class, if all instances of the class have this

attribute in the KB. This baseline performs like Baseline 2 at θ = 1.

2
We are talking about a property of our data, not about genders in the real world.

https://suchanek.name/work/publications/www-2018-data
https://suchanek.name/work/publications/www-2018-data
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Figure 2: Influence of θ on precision, recall and F1 for the different algorithms
Baseline 1 is Baseline 2 for parameter θ = 1

Unsurprisingly, it has a very good precision, but a very bad recall:

Only very few attributes (such as label) appear on all instances.

Baseline 2. This baseline relaxes Baseline 1 by labeling an attribute
as obligatory if it is very prevalent in the class. For smaller θ , this
method has a better recall than Baseline 1. However, it cannot ex-

ceed an F1 value of 45%. This is because there is no global threshold

θ that would work well for all attributes. The baseline will work bet-

ter if the KB is more complete. At the same time, the more complete

the KB is, the less novel information there is to predict.

Baseline 3. This baseline (inspired by [1]) considers an attribute

obligatory for a class if the vast majority of instances with that

attribute fall in that class. The somewhat unusual curve comes from

the fact that the baseline chooses the deepest class in the taxonomy

where the target rule holds. While the method achieves slightly

better F1 values (55%), its precision never exceeds 42%.

Confidence Ratio (Strict). This is our approach, based on the

ratio of an attribute in a class and its intersections with the other

classes (Algorithm 1). Different from Baseline 2, it delivers a very

high precision (always > 80%) – at the expense of somewhat lower

recall. The best F1 measure is 37%.

Confidence Ratio (Relaxed). The relaxed variant of our method

is less conservative. It trades off precision for higher recall. Indeed,

we see that recall increases steadily with growing θ , while precision
decreases gently. This allows for very good trade-offs between the

two, with the maximum F1 value easily surpassing 55%. It is thus

our method of choice.

Fisher’s Test. This variation of our approach aims to make the

Confidence Ratio less vulnerable to small data sizes. This is indeed

what happens. However, the method errs on the side of caution: it

has a very good precision (always > 90%), but a mediocre recall.

Hence, the best F1 value is quite low (12%). To increase this recall,

the significance level of this test would have to be increased by a

factor of several orders of magnitude, which would defy its purpose.

Themethod should thus be seen as a stable, but inherently precision-

oriented method.

Comparison. Figure 3 plots precision and recall for each of the

methods across the spectrum of parameter values.
3
Baseline 3

achieves the highest recall. However, its precision never exceeds

42%, which makes the method unusable in practice. On the other

side of the spectrum, Baseline 2 offers very good precision – but it

cannot achieve good recall. Our relaxed confidence ratio occupies

a sweet spot between the two: a precision between 75% and 95%, at

a recall of 45% and 10%, respectively. It thus dominates the other

methods in the mid-range between good recall and good precision.

3
Different values for θ can give the same combination of precision and recall, whence

the “loop” of Baseline 3.
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Figure 3: Precision and Recall on YAGO

Completeness of the attributes. By identifying classes in which

an attribute is obligatory, our method identifies the entities that

should have this attribute. If we compute the proportion of these

entities that actually have the attribute in the data, we get an ap-

proximation of the completeness of the data. Table 1 shows the

estimated completeness of the data according to different methods:

the gold standard, Baseline 2 at different thresholds, and our method

at different thresholds. We show 3 attributes that are obligatory in

certain classes, and the deviation from the gold standard across all

attributes. The small deviation for our method shows that we can

approximate the real completeness quite well.

We can now also algorithmically answer the question raised in

the title of this paper: No, not all people are married. Our method

finds that isMarriedTo is an optional attribute for the class Person.

However, marriage is obligatory for the classes Spouse and Royal-

Consort.

Baseline 2 CR (Relaxed)

Attribute Gold Standard 0.5 0.9 1.5 3

hasGender 0.58 0.51 0.91 0.79 0.58

wasBornIn 0.14 0.47 0.93 0.46 0.25

isMarriedTo 0.57 0.51 0.93 0.59 0.23

Avg-Squared error to GS (all p) 0.21 0.59 0.17 0.08

Table 1: Approximation of completeness of attributes

6.5 Wikidata Experiment
As a stress test, we also evaluated our method on Wikidata, where

less is known about our assumptions. Figure 4 shows our results.

We first note that all methods exhibit a similar behavior to the

YAGO experiment. Baseline 3 has high recall, low precision (< 55%)

and remains unstable. Baseline 2 performs well, with a precision of

97% and a recall of 33% for threshold θ = 0.7. This indicates that
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Figure 4: Stress test: Precision and Recall on Wikidata

some of the properties in our data are already highly complete. Our

method performs similarly to Baseline 2 in the precision range of

97%. However, in precision range of 93%, it has a higher recall than

Baseline 2.

6.6 Artificial Classes
In the following two experiments, we investigate how our algo-

rithm performs on artificially constructed classes. For this purpose,

we constructed classes that depend on the facts in our KB. Since

the facts are incomplete, these classes are incomplete, too, and

Assumption 2 no longer holds.

Life Expectancy.We construct artificial classes for all people born

before a certain decade t :

Ct = {x |∃y : birthDate(x ,y) ∧ y < t}

These classes form a taxonomy:

Ct ⊆ Ct+10

In this way, we generated the classes Ct for t = 1700, 1710, ..., 2020

in YAGO. We can now mine obligatory attributes also on these

artificial classes. In particular we mine the generalization rule

Ct ⊆ deathDateW

Table 2 shows the t for which the rule holds, according to our

relaxed algorithm. We see that for a conservative θ < 3 (which

delivered high precision also in the previous experiments), we get

again very good estimates for t . As θ increases, our method starts

to believe that all people (even younger ones) should have a death

date – as expected. This experiment shows that our approach has

the potential to mine obligatory attributes even on intensionally

defined classes.



θ up to 1.3 2.5 5.0 9.5 10 20 30

t mined 1920 1930 1940 1950 1960 1970 1980

Table 2: Life expectancy experiment

Cardinality experiment. To illustrate the effect of more fine-

grained classes on our algorithm, we constructed for every attribute

p and every number n the classes pn+ as the set of entities having
more than n objects for attribute p:

pn+ = {x |∃>ny : p(x ,y)}

These classes form a taxonomy, with p(n+1)+ ⊆ pn+. We added

these classes to YAGO and we ran our algorithm with a small

modification: for an attribute p, we never considered any class pn+
for the intersections. This is to exclude trivial rules of the form

pn+ ⊆ p. In the end, our algorithm with threshold θ = log(3)

outputs 248 rules with cardinality classes. The new classes produce

two effects (exemplified in Table 3): First, the algorithm now overfits

and deduces that a birth date would be obligatory (only) for certain

subclasses of people. Second, the algorithm can now make very

fine grained predictions about the real world. Thus, it predicts that

anyone who has more than 8 children in the KB is most likely

married in the real world. We see this as an encouragement to

investigate the potential of artificially constructed classes for future

work.

Overfitting rules
created80+ ⇒ wasBornIn
playsFor14+ ⇒ wasBornIn
edited6+ ⇒ wasBornIn

Fine-grained Predictions
hasChild8+ ⇒ isMarriedTo
actedIn49+ ⇒ isMarriedTo
isMarriedTo3+ ⇒ hasChild
actedIn24+ ⇒ hasChild

Table 3: Cardinality experiment

7 CONCLUSION
In this paper, we have introduced the novel problem of mining

obligatory attributes from knowledge bases. This is the problem

of determining whether all instances of a given class have a given

attribute in the real world – while all we have at our disposal is

an incomplete KB. We have developed a new way to model the

incompleteness of a KB statistically. From this model, we were

able to derive the necessary conditions for obligatory attributes.

Based on this, we have proposed an algorithm that can mine such

attributes with a precision of up to 92%.

For futurework, we plan to study generalizations of our approach

to artificially constructed classes, to rules with negation, or to rules

with more complex general statements. We see this line of work

as a first step towards deriving statistical confidence about real-

world rules from an incomplete knowledge base. We hope that this

research can deliver insights about the completeness of existing

KBs, and that it can help making KBs ever more complete in the

future.
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A PROOFS OF THE THEORETICAL RESULTS
Theorem 1 (Random sampling under PCA). Under Assumptions 3

and 4, for each property p with probability lp (as given by Assump-

tion 3),

∀x : P(∃y : p(x ,y)) =

{
lp , if x ∈ pW
0, otherwise

Proof. Let us assume that�y : p(x ,y) ∈ W. ThenAssumption 3

tells us that ∀y : P(p(x ,y)) = 0, and thus the second case of our

theorem holds. Now let us consider the case where there exists

z with p(x , z) ∈ W. For any KB K , if K contains p(x , z), then
∃y : p(x ,y) in K . If ∃y : p(x ,y) in K , then Assumption 4 tells

us that K either contains p(x , z), or else P(K) = 0. As p(x , z) and
∃y : p(x ,y) coincide on any KB K such that P(K) > 0, P(∃y :

p(x ,y)) = P(p(x , z)). Assumption 3 tells us that P(p(x , z)) = lp ,
which proves the first case of our theorem. �

Proposition 5 (Unbiased estimator). Given two classes c, c ′ and a
property p, the expected confidence of c ∩ p ⊆ c ′ in Ω is an unbiased

estimator for the confidence inW:

E[conf (c ∩ p ⊆ c ′)] = conf (c ∩ pW ⊆ c ′)

Proof. Consider the following two random variables:

X = |p ∩ c ∩ c ′ | ∼ Binom(|pW ∩ c ∩ c ′ |, lp )

Y = |p ∩ c \ c ′ | ∼ Binom(|pW ∩ c \ c ′ |, lp )

Letn be a natural number.X givenX+Y = n follows a hypergeomet-

ric distribution with parameters (|pW ∩ c |,n, conf (c ∩ pW ⊆ c ′)).
Then, E[X | X + Y = n] = n × conf (c ∩ pW ⊆ c ′). This implies

E[conf (c ∩ p ⊆ c ′) | X + Y = n] = conf (c ∩ pW ⊆ c ′)

This is true for all estimates n. �

Proposition 6 (Main observation). If p is an obligatory attribute

for some class c , then for every class c ′ with |c∩c ′ | , 0 and |c \c ′ | , 0,

E[sp (c, c
′)] = 1

Proof. We first show that

sKp (c, c ′) =
|c ∩ c ′ |

|c \ c ′ |
×
1 − conf (c ∩ pK ⊆ c ′)

conf (c ∩ pK ⊆ c ′)

Proposition 5 then tells us that

E[sp (c, c
′)] =

|c ∩ c ′ |

|c \ c ′ |
×
1 − conf (c ∩ pW ⊆ c ′)

conf (c ∩ pW ⊆ c ′)

Proposition 2 then implies

E[sp (c, c
′)] =

|c ∩ c ′ |

|c \ c ′ |
×
1 − conf (c ⊆ c ′)

conf (c ⊆ c ′)
= 1 �
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