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Abstract
In this paper, we give a number of new exact algorithms and heuristics to compute linear boolean
decompositions, and experimentally evaluate these algorithms. The experimental evaluation
shows that significant improvements can be made with respect to running time without increasing
the width of the generated decompositions. We also evaluated dynamic programming algorithms
on linear boolean decompositions for several vertex subset problems. This evaluation shows that
such algorithms are often much faster (up to several orders of magnitude) compared to theoretical
worst case bounds.
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1 Introduction

Boolean-width is a recently introduced graph parameter [2]. Similarly to treewidth and other
parameters, it measures some structural complexity of a graph. Many NP-hard problems on
graphs become easy if some graph parameter is small. We need a derived structure which
captures the necessary information of a graph in order to exploit such a small parameter. In
the case of boolean-width, this is a binary partition tree, referred to as the decomposition
tree. However, computing an optimal decomposition tree is usually a hard problem in itself.
A common approach to bypass this problem is to use heuristics to compute decompositions
with a low boolean-width.

Algorithms for computing boolean decompositions have been studied before in [16, 8, 10, 5],
but in this paper we study the specific case of linear boolean decompositions, which are
considered in [1, 8, 10]. Linear decompositions are easier to compute and the theoretical
running time of algorithms for solving practical problems is lower on linear decompositions
than on tree shaped ones. For instance, vertex subset problems can be solved in O∗(nec3)
due to a dynamic programming algorithm by Bui-Xuan et al. [3], but this can be improved to
O∗(nec2) for linear decompositions. Here, nec is the number of d-neighborhood equivalence
classes, i.e., the maximum size of the dynamic programming table.
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We first give an exact algorithm for computing optimal linear boolean decompositions,
improving upon existing algorithms, and subsequently investigate several new heuristics
through experiments, improving upon the work by Sharmin [10, Chapter 8]. We then study
the practical relevance of these algorithms experimentally by solving an instance of a vertex
subset problem, investigating the number of equivalence classes compared to the theoretical
worst case bounds. Omitted proofs can be found in the full version of this paper [12].

2 Preliminaries

A graph G = (V,E) of size n is a pair consisting of a set of n vertices V and a set of edges
E. The neighborhood of a vertex v ∈ V is denoted by N(v). For a subset A ⊆ V we denote
the neighborhood by N(A) =

⋃
v∈AN(v). In this paper we only consider simple, undirected

graphs and assume we are given a total ordering on the vertices of a graph G. For a subset
A ⊆ V we denote the complement by A = V \A. A partition (A,A) of V is called a cut of
the graph. Each cut (A,A) of G induces a bipartite subgraph G[A,A]. The neighborhood
across a cut (A,A) for a subset X ⊆ A is defined as N(X) ∩A.

I Definition 1 (Unions of neighborhoods). Let G = (V,E) be a graph and A ⊆ V . We define
the set of unions of neighborhoods across a cut (A,A) as

UN (A) =
{
N(X) ∩A

∣∣X ⊆ A} .
The number of unions of neighborhoods is symmetric for a cut (A,A), i.e., |UN (A)| =

|UN (A)| [6, Theorem 1.2.3]. Furthermore, for any cut (A,A) of a graph G it holds that
|UN (A)| = #MIS(G[A,A]), where #MIS(G) is the number of maximal independent sets
in G [16, Theorem 3.5.5].

I Definition 2 (Decomposition tree). A decomposition tree of a graph G = (V,E) is a pair
(T, δ), where T is a full binary tree and δ is a bijection between the leaves of T and vertices
of V . If a is a node and L are its leaves, we write δ(a) =

⋃
l∈L δ(l). So, for the root node r

of T it holds that δ(r) = V . Furthermore, if nodes a and b are children of a node w, then
(δ(a), δ(b)) is a partition of δ(w).

In this paper we consider a special type of decompositions, namely linear decompositions.

I Definition 3 (Linear decomposition). A linear decomposition, or caterpillar decomposition,
is a decomposition tree (T, δ) where T is a full binary tree and for which each internal node
of T has at least one leaf as a child. We can define such a linear decomposition through a
linear ordering π = π1, . . . , πn of the vertices of G by letting δ map the i-th leaf of T to πi.

I Definition 4 (Boolean-width). Let G = (V,E) be a graph and A ⊆ V . The boolean
dimension of A is a function bool-dim : 2V → R.

bool-dim(A) = log2 |UN (A)|.

Let (T, δ) be a decomposition of a graph G. We define the boolean-width of (T, δ) as the
maximum boolean dimension over all cuts induced by nodes of (T, δ).

boolw(T, δ) = max
w∈T

bool-dim(δ(w))

The boolean-width of G is defined as the minimum boolean-width over all possible full
decompositions of G, while the linear boolean-width of a graph G = (V (G), E(G)) of size n
is defined as the the minimum boolean-width over all linear decompositions of G.

boolw(G) = min
(T,δ) of G

boolw(T, δ)
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lboolw(G) = min
linear (T,δ) of G

boolw(T, δ)

It is known that for any graph G it holds that boolw(G) ≤ treewidth(G) + 1 [16, Theorem
4.2.8]. The linear variant of treewidth is called pathwidth [9], or pw for short.

I Theorem 5. For any graph G it holds that lboolw(G) ≤ pw(G) + 1.

The algorithms in this paper make extensive use of sets and set operations, which can be
implemented efficiently by using bitsets. We assume that bitset operations take O(n) time
and need O(n) space, even though in practice this may come closer to O(1). If one assumes
that these requirements are constant, several time and space bounds in this paper improve
by a factor n.

In this paper we assume that the graph G is connected, since if the graph consists of
multiple connected components we can simply compute a linear decomposition for each
connected component, after which we glue them together, in any arbitrary order.

3 Exact Algorithms

We can characterize the problem of finding an optimal linear decomposition by the following
recurrence relation, in which P is a function mapping a subset of vertices A to the linear
boolean-width of the induced subgraph G[A,A].

P ({v}) = |UN ({v})| =
{

1 if N(v) = ∅
2 if N(v) 6= ∅

P (A) = min
v∈A
{max{|UN (A)|, P (A \ {v})}}

(1)

The boolean-width of the graph G is now given by log2(P (V )). Adaptation of existing
techniques lead to the following algorithms for linear boolean-width, upon we hereafter
improve:

With dynamic programming a running time of O(2.7284n) is achieved [12, Theorem 19].
With adaptation of the exact algorithm for boolean-width by Vatshelle [16], a running
time of O(n3 · 2n+lboolw(G)) is achieved [12, Theorem 20].

3.1 Improving the running time
We present a faster and easier way to precompute for all cuts A ⊆ V the value |UN (A)|,
which results in a new algorithm displayed in Algorithm 2. In the following it is important
that the UN sets are implemented as hashmaps, which will only save distinct neighborhoods.

Algorithm 1 Compute UN (X ∪ {v}) given UN (X).
1: procedure Increment-UN(G,X,UNX , v)
2: U ← ∅
3: for S ∈ UNX do
4: U ← U ∪ {S \ {v}}
5: U ← U ∪

{
(S \ {v}) ∪ (N(v) ∩ (X \ {v}))

}
6: return U

I Lemma 6. The procedure Increment-UN is correct and runs in O(n · |UNX |) time using
O(n · |UNX |) space.

IPEC’15
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Algorithm 2 Return lboolw(G), if it is smaller than logK, otherwise return ∞.
1: procedure Incremental-UN-exact(G,K)
2: TUN (∅)← 0
3: Compute-count-UN(G,K, TUN , ∅, {∅})
4:
5: P (X)←∞, for all X ⊆ V
6: P (∅)← 0
7:
8: for i← 0, . . . , |V | − 1 do
9: for X ⊆ V of size i do
10: for v ∈ V \X do
11: Y ← X ∪ {v}
12: if P (X) ≤ K then
13: P (Y )← min(P (Y ),max(TUN (Y ), P (X)))
14:
15: return log2(P (V ))
16:
17: procedure Compute-count-UN(G,K, TUN , X,UNX)
18: for v ∈ V \X do
19: Y ← X ∪ {v}
20: if TUN (Y ) is not defined then
21: UN Y ← Increment-UN(G,X,UNX , v)
22: TUN (Y )← |UN Y |
23: if TUN (Y ) ≤ K then
24: Compute-count-UN(G,K, TUN , Y,UN Y )

I Theorem 7. Given a graph G, Algorithm 2 can be used to compute lboolw(G) in O(n ·
2n+lboolw(G)) time using O(n · 2n) space.

This new algorithm improves upon the previously best time [12, Theorem 20] by a factor
n2, while the space requirements stay the same. Since the tightest known upperbound
for linear boolean-width is n

2 −
n

143 +O(1) [8], this algorithm can be slower than dynamic
programming, since O(2n+ n

2−
n

143 +O(1)) = O(2.8148n+O(1)) ) O(2.7284n), but this is very
unlikely to happen in practice.

4 Heuristics

4.1 Generic form of the heuristics
The goal when using a heuristic is to find a linear ordering of the vertices in a graph in such
a way that the decomposition that corresponds to this ordering will be of low boolean-width.
A basic strategy to accomplish this is to start the ordering with some vertex and then by
some selection criteria append a new vertex to the ordering that has not been appended yet.
This strategy is used in heuristics introduced by Sharmin [10, Chapter 8].

At any point in the algorithm we denote the set of all vertices contained in the ordering
by Left, and the remaining vertices by Right. While Right is not empty, we choose a vertex
from a candidate set Candidates ⊆ Right, based on a set of trivial cases, and, if no trivial
case applies, by making a local greedy choice using a score function that indicates the quality
of the current state Left,Right.
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The choice of the initial vertex can be of great influence on the quality of the decomposition.
Sharmin proposes to use a double breadth first search (BFS) in order to select this vertex, but
since we will see in Chapter 5 that applications are a lot more expensive in terms of running
time, it is wise to use all possible starting vertices when trying to find a good decomposition.

4.1.1 Pruning
Starting from multiple initial vertices allows us to do some pruning. If we notice during
the algorithm that the score of the decomposition that is being constructed exceeds the
score of the best decomposition found so far, we can stop immediately and move to the next
initial vertex. For this reason, it is wise to start with the most promising initial vertices (e.g.
obtained by the double BFS method), and after that try all other initial vertices.

4.1.2 Candidates
The most straightforward choice for the set Candidates is to take Right entirely. However,
we may do unnecessary work here, since vertices that are more than 2 steps away from any
vertex in Left cannot decrease the size of UN . This means that they should never be chosen
by a greedy score function, which means that we can skip them right away. By this reasoning,
the set of Candidates can be reduced to N2(Left) ∩ Right = N(Left ∪ N(Left)) ∩ Right.
Especially for larger sparse graphs, this can significantly decrease the running time.

4.1.3 Trivial cases
A vertex is chosen to be the next vertex in the ordering if it can be guaranteed that it is an
optimal choice by means of a trivial case. Lemma 8 generalizes results by Sharmin [10], since
the two trivial cases given by her are subcases of our lemma, namely X = ∅ and X = {u}
for all u ∈ Left. Note that we can add a wide range of trivial cases by varying X, such
as X = Left and ∀u,w ∈ Left : X = {u,w}, but this will increase the complexity of the
algorithm.

I Lemma 8. Let X ⊆ Left. If ∃v ∈ Right such that N(v) ∩ Right = N(X) ∩ Right, then
choosing v will not change the boolean-width of the resulting decomposition.

4.1.4 Relative Neighborhood Heuristic
For a cut (Left,Right) and a vertex v define

Internal(v) = (N(v) ∩N(Left)) ∩ Right
External(v) = (N(v) \N(Left)) ∩ Right

In the original formulation by Sharmin [10] |External(v)|
|Internal(v)| is used as a score function.

However, if we use |External(v)|
|Internal(v)|+|External(v)| = |External(v)|

|N(v)∩Right| we get the same ordering by
Lemma 9, without having an edge case for dividing by zero. Furthermore, in contrast to
Sharmin’s proposal of checking for each vertex w ∈ N(v) if w ∈ N(Left) ∩ Right or not, we
can compute these sets directly by performing set operations. We will refer to this heuristic
by RelativeNeighborhood.

I Lemma 9. The mapping a
b 7→

a
a+b is order preserving.

IPEC’15
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Two variations on this heuristic can be obtained through the score functions |External(v)|
|N(v)|

and 1 − |Internal(v)|
|N(v)| , which work slightly better for sparse random graphs and extremely

well for dense random graphs respectively. We will refer to these two variations by
RelativeNeighborhood2 and RelativeNeighborhood3.

One can easily see that the running time of these three algorithms is O(n3) and the required
space amounts to O(n). Notice however that this algorithm only gives us a decomposition.
If we need to know the corresponding boolean-width we need to compute it afterwards, for
instance by iteratively applying Increment-UN on the vertices in the decomposition, and
taking the maximum value. This would require an additional O(n2 · 2k) time and O(n · 2k)
space, where k is the boolean-width of the decomposition.

4.1.5 Least Cut Value Heuristic

The LeastCutValue heuristic by Sharmin [10] greedily selects the next vertex v ∈ Right
that will have the smallest boolean dimension across the cut (Left ∪ {v},Right \ {v}). This
vertex is obtained by constructing the bipartite graph BG = G[Left ∪ {v},Right \ {v}] for
each v ∈ Right, and counting the number of maximal independent sets of BG using the
CCM IS [7] algorithm on BG, with the time of CCM IS being exponential in n.

4.1.6 Incremental Unions of Neighborhoods Heuristic

Generating a bipartite graph and then calculating the number of maximal independent sets
is a computational expensive approach. A different way to compute the boolean dimension of
each cut is by reusing the neighborhoods from the previous cut, similarly to Incremental-
UN-exact. We present a new algorithm, called the Incremental-UN-heuristic, in
Algorithm 3. A useful property of this algorithm is that the running time is output sensitive.
It follows that if a decomposition is not found within reasonable time, then the decomposition
that would have been generated is not useful for practical algorithms.

I Theorem 10. The Incremental-UN-heuristic procedure runs in O(n3 · 2k) time using
O(n · 2k) space, where k is the boolean-width of the resulting linear decomposition.

5 Vertex subset problems

Boolean decompositions can be used to efficiently solve a class of vertex subset problems
called (σ, ρ) vertex subset problems, which were introduced by Telle [11]. This class of
problems consists of finding a (σ, ρ)-set of maximum or minimum cardinality and contains
well known problems such as the maximum independent set, the minimum dominating set
and the maximum induced matching problem. The running time of the algorithm for solving
these problems is O(n4 ·necd(T, δ)3) [3], where necd(T, δ) is the number of equivalence classes
of a problem specific equivalence relation, which can be bounded in terms of boolean-width.
In Section 6 we investigate how close the value of necd(T, δ) comes to any of the theoretical
bounds.
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Algorithm 3 Greedy heuristic that incrementally keeps track of the Unions of Neighborhoods.
1: procedure Incremental-UN-Heuristic(G, init)
2: Decomposition ← (init)
3: Left,Right ← {init}, V \ {init}
4: UNLeft ← {∅, N(init) ∩ Right}
5: while Right 6= ∅ do
6: Candidates ← set returned by candidate set strategy
7: if there exists v ∈ Candidates belonging to a trivial case then
8: chosen ← v

9: UN chosen ← Increment-UN(G,Left,UNLeft , v)
10: else
11: for all v ∈ Candidates do
12: UN v ← Increment-UN(G,Left,UNLeft , v)
13: if chosen is undefined or |UN v| < |UN chosen| then
14: chosen ← v

15: UN chosen ← UN v

16: Decomposition ← Decomposition · chosen
17: Left ← Left ∪ {chosen}
18: Right ← Right \ {chosen}
19: UNLeft ← UN chosen

20: return Decomposition

5.1 Definitions
I Definition 11 ((σ, ρ)-set). Let G = (V,E) be a graph. Let σ and ρ be finite or co-finite
subsets of N. A subset X ⊆ V is called a (σ, ρ)-set if the following holds

∀v ∈ V : |N(v) ∩X| ∈
{
σ if v ∈ X,
ρ if v ∈ V \X.

In order to confirm if a set X is a (σ, ρ)-set we have to count the number of neighbors
each vertex v ∈ V has in X, where it suffices to count up until a certain number of neighbors.
As an example, when we want to confirm if a set X is an independent set, which is equivalent
to checking if X is a ({0},N)-set, it is irrelevant if a vertex v has more than one neighbor in
X. We capture this property in the function d : 2N → N, which is defined as follows:

I Definition 12 (d-function). Let d(N) = 0. For every finite or co-finite set µ ⊆ N, let
d(µ) = 1 + min(max

x∈N
x : x ∈ µ,max

x∈N
x : x /∈ µ). Let d(σ, ρ) = max(d(σ), d(ρ)).

I Definition 13 (d-neighborhood). Let G = (V,E) be a graph. Let A ⊆ V and X ⊆ A. The
d-neighborhood of X with respect to A, denoted by Nd

A(X), is a multiset of vertices from A,
where a vertex v ∈ A occurs min(d, |N(v) ∩X|) times in Nd

A(X). A d-neighborhood can be
represented as a vector of length |A| over {0, 1, . . . , d}.

I Definition 14 (d-neighborhood equivalence). Let G = (V,E) be a graph and A ⊆ V . Two
subsets X,Y ⊆ A are said to be d-neighborhood equivalent with respect to A, denoted by
X ≡dA Y , if it holds that ∀v ∈ A : min(d, |X ∩ N(v)|) = min(d, |Y ∩ N(v)|). The number
of equivalence classes of a cut (A,A) is denoted by nec(≡dA). The number of equivalence
classes necd(T, δ) of a decomposition (T, δ) is defined as max(nec(≡dA), nec(≡d

A
)) over all

cuts (A,A) of (T, δ).

IPEC’15
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Note that N1
A(X) = N(X) ∩ A. It can then be observed that |UN (A)| = nec(≡1

A) [16,
Theorem 3.5.5] Also note that X ≡dA Y if and only if Nd

A(X) = Nd
A(Y ).

5.2 Bounds on the number of equivalence classes
We present a brief overview of the most relevant bounds that are currently known, for which
we make use of a twin class partition of a graph.

I Definition 15 (Twin class partition). Let G = (V,E) be a graph of size n and let A ⊆ V .
The twin class partition of A is a partition of A such that ∀x, y ∈ A, x and y are in the same
partition class if and only if N(x) ∩A = N(y) ∩A. The number of partition classes of A is
denoted by ntc(A) and it holds that ntc(A) ≤ min(n, 2bool-dim(A)) [2].

For all bounds listed below, let G = (V,E) be a graph of size n and let d be a non-negative
integer. Let (A,A) be a cut induced by any node of a decomposition (T, δ) of G, and let
k = bool-dim(A) = nec(≡1

A).

I Lemma 16 ([3, Lemma 5]). nec(≡dA) ≤ 2d·k2 .

I Lemma 17 ([16, Lemma 5.2.2]). nec(≡dA) ≤ (d+ 1)min(ntc(A),ntc(A)).

I Lemma 18. nec(≡dA) ≤ ntc(A)d·k.

By Lemma 16 we conclude that we can solve (σ, ρ) problems in O∗(8dk2). This shows that
applications are more computationally expensive than using heuristics to find a decomposition.

6 Experiments

The experiments in this section are performed on a 64-bit Windows 7 computer, with a 3.40
GHz Intel Core i5-4670 CPU and 8GB of RAM. We implemented the algorithms using the
C# programming language and compiled our programs using the csc compiler that comes
with Visual Studio 12.0.1

6.1 Comparing Heuristics on random graphs
We will look at the performance of heuristics on randomly generated graphs, for which we
used the Erdös-Rényi-model [4] to generate a fixed set of random graphs with varying edge
probabilities.

In these experiments we start a heuristic once for each possible initial vertex, so n times
in total. For the RelativeNeighborhood heuristic we select the best decomposition
based upon the sum of the score function for all cuts, since computing all actual linear
boolean-width values would take O(n3 · 2k) time, thereby removing the purpose of this
polynomial time heuristic. For the set Candidates we take N2(Left) ∩Right, which avoids
that we exclude certain optimal solutions, as opposed to Sharmin [10], who restricted this
set to N(Left) ∩Right. However, this does not affect the results significantly.

We let the edge probability vary between 0.05 and 0.95 with steps of size 0.05. For each
edge probability value, we generated 20 random graphs. The result per edge probability is
taken to be the average boolean-width over these 20 graphs, which are shown in Figure 1. It

1 Source code of our implementations can be found on https://github.com/Chiel92/boolean-width
and https://github.com/FrankvH/BooleanWidth

https://github.com/Chiel92/boolean-width
https://github.com/FrankvH/BooleanWidth
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Figure 1 Performance of different heuristics on random generated graphs consisting of 20 vertices,
with varying edge probabilities, in terms of linear boolean-width.

can be observed that the Incremental-UN-heuristic procedure performs near optimal.
Furthermore we see that the RelativeNeighborhood variants perform somewhere in
between the optimal value and the value of random decompositions.

6.2 Comparing heuristics on real-world graphs

In order to get an idea of how the Incremental-UN-heuristic compares to existing
heuristics we compare them by both the boolean-width of the generated decomposition and
the time needed for computation. We cannot compare the heuristics to the optimal solution,
because computing an exact decomposition is not feasible on these graphs. The graphs that
were used come from Treewidthlib [13], a collection of graphs that are used to benchmark
algorithms using treewidth and related graph problems.

We ran the three different heuristics mentioned in Section 4 with Candidates = Right and
with an additional two variations on the Incremental-UN-heuristic (IUN) by varying
the set of start vertices. The first variation, named 2-IUN, has two start vertices which are
obtained through a single and double BFS respectively. The n-IUN heuristic uses all possible
start vertices. For all other heuristics we obtained the start vertex through performing a
double BFS. In Table 1 and 2 we present the results of our experiments.

It is expected that the IUN heuristic and LeastCutValue heuristic give the same
linear boolean-width, since both these heuristics greedily select the vertex that minimizes
the boolean dimension. The RelativeNeighborhood heuristic performs worse than all
other heuristics in nearly all cases. While the difference might not seem very large, note that
algorithms parameterized by boolean-width are exponential in the width of a decomposition.
The 2-IUN heuristic outperforms IUN in three cases while n-IUN gives a better decomposition
in 11 out of 13 cases, which shows that a good initial vertex is of great influence on the width
of the decomposition.

Looking at the times displayed in Table 2 for computing each decomposition we see
that the RelativeNeighborhood heuristic is significantly faster. This is to be expected
because of the O(n3) time, compared to the exponential time for all other heuristics. The
interesting comparison that we can make is the difference between the IUN heuristic and
LeastCutValue heuristic. While both of these heuristics give the same decomposition,
IUN is significantly faster. Additionally, even 2-IUN and n-IUN are often faster than the
LeastCutValue heuristic.

IPEC’15
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Table 1 Linear boolean-width of the decompositions returned by different heuristics.

Graph |V | Edge Density Relative LeastCut IUN 2-IUN n-IUN
barley 48 0.11 5.70 5.91 5.91 4.70 4.58
pigs-pp 48 0.12 10.35 7.13 7.13 7.13 6.64
david 87 0.11 9.38 6.27 6.27 6.27 5.86

celar04-pp 114 0.08 11.67 7.27 7.27 7.27 7.27
1bkb-pp 127 0.18 16.81 9.98 9.98 9.53 9.53
miles1500 128 0.64 8.17 5.58 5.58 5.58 5.29
celar10-pp 133 0.07 10.32 11.95 11.95 7.64 6.91
munin2-pp 167 0.03 15.17 9.61 9.61 9.61 7.61
mulsol.i.5 186 0.23 7.55 5.29 5.29 5.29 3.58
zeroin.i.2 211 0.16 7.92 4.46 4.46 4.46 3.81
boblo 221 0.01 19.00 4.32 4.32 4.32 4.00

fpsol2.i-pp 233 0.40 5.58 6.07 6.07 5.78 4.81
munin4-wpp 271 0.02 13.04 9.27 9.27 9.27 7.61

Table 2 Time in seconds of the heuristics used to find linear boolean decompositions.

Graph |V | Edge Density Relative LeastCut IUN 2-IUN n-IUN
barley 48 0.11 < 0.01 0.18 0.01 0.02 0.16
pigs-pp 48 0.12 < 0.01 0.76 0.02 0.04 0.52
david 87 0.11 0.02 3.15 0.04 0.06 1.62

celar04-pp 114 0.08 0.04 5.73 0.14 0.23 9.85
1bkb-pp 127 0.18 0.06 198.05 1.14 4.18 107.32
miles1500 128 0.64 0.06 44.57 0.10 0.14 7.05
celar10-pp 133 0.07 0.06 8.93 1.96 4.72 18.43
munin2-pp 167 0.03 0.11 3.81 0.80 3.37 30.21
mulsol.i.5 186 0.23 0.09 37.88 0.13 0.27 8.80
zeroin.i.2 211 0.16 0.06 18.70 0.09 0.11 5.85
boblo 221 0.01 0.29 3.39 0.28 0.56 46.22

fpsol2.i-pp 233 0.40 0.18 189.11 0.36 0.74 56.63
munin4-wpp 271 0.02 0.61 57.87 1.98 6.66 367.37

6.3 Vertex subset experiments

We have used the linear decompositions given by the n-IUN heuristic to compute the size
of the maximum induced matching (MIM) in a selection of graphs, of which the results
are presented in Table 3. The maximum induced matching problem is defined as finding
the largest ({1},N) set, with d({1},N) = 2. The choice for the MIM problem is arbitrary,
any vertex subset problem with d = 2 will have the same number of equivalence classes
and therefore they all require the same time when computing a solution. We present the
computed value of necd(T, δ), together with theoretical upperbounds. For d = 2 a tight
upperbound in terms of boolean-width is not known. Note that we take the logarithm of each
value, since we find this value easier to interpret and compare to other graph parameters. We
let UB1 = 2d·boolw2 , UB2 = (d+ 1)minntc and UB3 = ntcd·boolw, with ntc = max

w∈T
ntc(δ(w))

and minntc = max
w∈T

min(ntc(δ(w)),ntc(δ(w))).

The column MIM displays the size of the MIM in the graph, while the time column
indicates the time needed to compute this set. Missing values for nec and MIM are caused
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Table 3 Results of using the algorithm by Bui-Xuan et al. [3] for solving (σ, ρ) problems on
graphs, using decompositions obtained through the n-IUN heuristic.

Graph boolw log2(nec) log2(UB1) log2(UB2) log2(UB3) MIM Time (s)
barley 4.58 7.00 42.04 12.68 27.51 22 3
pigs-pp 6.64 10.31 88.28 19.02 49.17 22 1147
david 5.86 9.37 68.63 22.19 44.61 34 919

celar04-pp 7.27 11.15 105.61 28.53 65.74 – –
1bkb-pp 9.53 – 181.47 52.30 98.49 – –
miles1500 5.29 9.30 55.87 34.87 49.69 8 4038
celar10-pp 6.91 10.34 95.41 25.36 59.70 50 10179
munin2-pp 7.61 11.82 115.97 19.02 54.60 – –
mulsol.i.5 3.58 6.11 25.70 14.26 24.80 46 22
zeroin.i.2 3.81 6.58 28.99 20.60 28.18 30 59
boblo 4.00 6.17 32.00 9.51 20.68 148 41

fpsol2.i-pp 4.81 8.07 46.22 22.19 36.61 46 934
munin4-wpp 7.61 12.13 115.97 19.02 57.98 – –

by a lack of internal memory, because of the O∗(necd(T, δ)2) space requirement. One can
immediately see that there is a large gap between the upperbound for nec2 in terms of
boolean-width and nec2 itself. Another interesting observation we can make by looking at
the graphs zeroin.i.2 and boblo, is that a lower boolean-width does not imply a lower nec2.
We even encountered this for decompositions of the same graph: for the graph barley we
observed boolw(T, δ) = 4.58 and boolw(T ′, δ′) = 4.81, while log2(nec2(T, δ)) = 7.00 and
log2(nec2(T ′, δ′)) = 6.75. This suggests that this upperbound does not justify minimizing
nec2 through boolean-width in practice.

7 Conclusion

We have presented a new heuristic and a new exact algorithm for finding linear boolean
decompositions. The heuristic has a running time that is several orders of magnitude lower
than the previous best heuristic and finds a decomposition in output sensitive time. This
means that if a decomposition is not found within reasonable time, then the decomposition
that would have been generated is not useful for practical algorithms. Running the new
heuristic once for every possible starting vertex results in significantly better decompositions
compared to existing heuristics.

We have seen that if lboolw(T, δ) < lboolw(T ′, δ′), then there is no guarantee that
nec(T, δ) < nec(T ′, δ′). While in general it holds that minimizing boolean-width results
in a low value of number of equivalence classes, we think that it can be worthwhile to
focus on minimizing the necd instead of the boolean-width when solving vertex subset
problems. However, the number of equivalence classes is not symmetric, i.e., for a cut (A,A)
necd(A) 6= necd(A), which makes it harder to develop fast heuristics that focus on minimizing
necd since we need to keep track of both the equivalence classes of A and A.

Further research can be done in order to obtain even better heuristics and better up-
perbounds on both the linear boolean-width and boolean-width on graphs. For instance,
combining properties of the Incremental-UN-heuristic and the RelativeNeighbor-
hood heuristic might lead to better decompositions, as they make use of complementary
features of a graph. Another approach for obtaining good decompositions could be a branch
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and bound algorithm that makes us of trivial cases that are used in the heuristics. To
decrease the time needed by the heuristics one can investigate reduction rules for linear
boolean-width. While most reduction rules introduced by Sharmin [10] for boolean-width do
not hold for linear boolean-width, they can still be used on a graph after which we can use
our heuristic on the reduced graph. Although the resulting decomposition after reinserting
the reduced vertices will not be linear, the asymptotic running time for applications does
not increase [14]. Another topic of research is to compare the performance of vertex subset
algorithms parameterized by boolean-width to algorithms parameterized by treewidth [15].
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