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Fast Approximation of Centrality
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Abstract

Social studies researchers use graphs to model group
activities in social networks. An important property
in this context is thecentrality of a vertex: the in-
verse of the average distance to each other vertex.
We describe a randomized approximation algorithm
for centrality in weighted graphs. For graphs exhibit-
ing the small world phenomenon, our method esti-
mates the centrality of all vertices with high proba-
bility within a (1+ ǫ) factor in near-linear time.

1 Introduction

In social network analysis, the vertices of a graph
represent agents in a group and the edges represent
relationships, such as communication or friendship.
The idea of applying graph theory to analyze the con-
nection between the structuralcentrality and group
process was introduced by Bavelas [3]. Various mea-
surement of centrality [6, 10, 11] have been proposed
for analyzing communication activity, control, or in-
dependence within a social network.

We are particularly interested incloseness cen-
trality [4, 5, 15], which is used to measure the
independence and efficiency of an agent [10, 11].
Beauchamp [5] defined the closeness centrality of
agentaj as

n − 1
∑n

i=1 d(i, j)

whered(i, j) is the distance between agentsi andj.1

We are interested in computing centrality values for
all agents. To compute the centrality for each agent,
it is sufficient to solve the all-pairs shortest-paths
(APSP) problem. No faster exact method is known.
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1This should be distinguished from another common concept
of graph centrality, in which the most central vertices minimize
the maximum distance to another vertex.

The APSP problem can be solved by various al-
gorithms in timeO(nm + n2 logn) [9, 13], O(n3)
[8], or more quickly using fast matrix multiplication
techniques [2, 7, 16, 17]. Because these results
are slow or (with fast matrix multiplication) com-
plicated and impractical, and because recent appli-
cations of social network theory to the internet may
involve graphs with millions of vertices, it is of in-
terest to consider faster approximations. Aingworth
et al. [1] proposed an algorithm with an additive er-
ror of 2 for the unweighted APSP problem that runs
in timeO(n2.5√logn). However this is still slow and
does not provide a good approximation when the dis-
tances are small.

In this paper, we consider a method for fast ap-
proximation of centrality. We apply a random sam-
pling technique to approximate the inverse central-
ity of all vertices in a weighted graph to within an
additive error ofǫ∆ with high probability in time
O( logn

ǫ2 (n logn + m)), whereǫ is any fixed constant
and∆ is the diameter of the graph.

It has been observed empirically that many social
networks exhibit thesmall world phenomenon [14]:
their diameter is bounded by a constant, or, equiva-
lently, the ratio between the minimum and maximum
distance is bounded. For such networks, the inverse
centrality at any vertex isΩ(∆) and our method pro-
vides a near-linear time(1+ ǫ)-approximation to the
centrality of all vertices.

2 The Algorithm

We now describe a randomized approximation al-
gorithm RAND for estimating centrality. RAND
randomly choosesk sample vertices and computes
single-source shortest-paths (SSSP) from each sam-
ple vertex to all other vertices. The estimated cen-
trality of a vertex is defined in terms of the average
distance to the sample vertices.
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Algorithm RAND:

1. Letk be the number of iterations needed to ob-
tain the desired error bound.

2. In iterationi, pick vertexvi uniformly at random
from G and solve the SSSP problem withvi as
the source.

3. Let

ĉu = 1/
k

∑

i=1

n d(vi, u)
k(n − 1)

be the centrality estimator for vertexu.

It is not hard to see that, for anyk andu, the ex-
pected value of 1/ĉu is equal to 1/cu.

Lemma 1 (Hoeffding [12]) If x1, x2, . . . , xk are in-
dependent, ai ≤ xi ≤ bi, and µ = E[

∑

xi/k] is the
expected mean, then for ξ > 0

Pr
{

|
∑k

i=1 xi

k
− µ| ≥ ξ

}

≤ 2e−2k2ξ2/
∑k

i=1(bi−ai)
2
.

We need to bound the probability that the error in
estimating the inverse centrality of any vertexu is at
mostξ. This is done by applying Hoeffding’s bound
with xi = d(i,u)n

(n−1) , µ = 1
cu

, ai = 0, andbi = n∆
n−1.

Thus the probability that the difference between the
estimated inverse centrality 1/ĉu and the actual in-
verse centrality 1/cu is more thanξ is

Pr
{

| 1
ĉu

− 1
cu
| ≥ ξ

}

≤ 2 · e−2k2ξ2/
∑k

i=1(bi−ai)
2

= 2 · e−2k2ξ2/k( n∆
n−1)

2

= 2 · e−Ω(kξ2/∆2)

For ξ = ǫ∆, using Θ( logn
ǫ2 ) samples will cause

the probability of error at any vertex to be bounded
above by e.g. 1/n2, giving at most 1/n probability of
having greater thanǫ∆ error anywhere in the graph.

The total running time of algorithm isO(k · m)
for unweighted graphs andO(k(n log n + m)) for
weighted graphs. Thus, fork = Θ( logn

ǫ2 ), we have

anO( logn
ǫ2 (n log n + m)) algorithm for approximat-

ing centrality within an inverse additive error ofǫ∆
with high probability.
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