
A Modular Overlapping Community Detection Algorithm:
Investigating the “From Local to Global” Approach

Maximilien Danisch1, Noé Gaumont2, Jean-Loup Guillaume3

1 Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6, Paris F-75005, France
2 Complex Systems Institute of Paris Ile-de-France (ISC-PIF), Paris, France, CAMS, CNRS -

EHESS, Paris, France
3 Laboratoire Informatique, Image et Interaction (L3i), Université de La Rochelle, La Rochelle,

France

Abstract
We propose an overlapping community detection algorithm following a “from local

to global approach”: our algorithm finds local communities one by one by repetitively
optimizing a quality function that measures the quality of a community. Then, as some
extracted local communities can be very similar to each-other, a cleaning procedure is
applied to obtain the global overlapping community structure. Our algorithm depends
on three modules: (i) a quality function, (ii) an optimization heuristic and (iii) a cleaning
procedure. Various such modules can be independently plugged in. We show that, using
default modules, our algorithm improves over a state-of-the-art method on some real-
world graphs with ground truth communities. In the future we would like to study which
combination of modules performs best in practice and make our code parallel.

1 Introduction
The Web graph (web pages connected by hyperlinks), Facebook (profiles connected by friend-
ships), Internet (computers connected by Internet connections) and a human brain (neurons
connected by synapses) are only a few examples of graphs extracted from the real world.

Designing practical algorithms to find relevant groups of nodes in such graphs has applica-
tions ranging from web search to drug design. However, designing such community detection
algorithms is an extremely challenging task, indeed most real-world graphs are huge making
any quadratic time algorithm not practical. In addition, community detection is an ill-defined
problem, indeed there is no clear definition of what is a community, i.e. a relevant set of nodes.

In this paper we propose a generic and modular algorithm, called MOCDA for Modular
Overlapping Community Detection Algorithm, that allows to compute a set of overlapping
communities. This algorithm is based on a "local to global" approach (seed-centric approach)
[4] where local communities are expanded around seeds by the repeated addition of nodes. A
function is used to assess the quality of each community and an optimisation heuristic is used
to optimize it. As two local communities could differ by only a small number of nodes, all the
local communities are cleaned to remove the noise caused by similar communities and provide
the global overlapping structure of the network. All steps are modular: the quality function,
the optimization itself and the cleaning procedures can be modified to fit the needs of the user.

The rest of the paper is organized as follows: in Section 2 we present the algorithm and the
different modules, in Section 3 we benchmark our algorithm against existing state-of-the-art
method and we conclude in Section 4.

2 Algorithm
We detail here our modular algorithm for detecting overlapping communities that relies on
three modules: (i) the definition of a function that evaluates the quality of a community,
(ii) an optimization heuristic and (iii) a cleaning procedure. An efficient C implementation
is available at https://github.com/maxdan94/mocda in which options are available to chose
different strategies for the three modules. 1

2.1 Quality functions
A quality function is a function that evaluates if a given set of nodes is a good community or
not. As there are several definitions of a good community, there are several ways to evaluate a
set of nodes, such as the clustering coefficient or the conductance. We narrow the set of possible
quality functions in MOCDA to those relying on local features to evaluate a given set of nodes
or very simple global fatures. Indeed, a quality function actually does not need a complete
knowledge of the graph to evaluate to what extent a set of nodes is a good community.

Formally, we consider quality functions that can be expressed as a function f(φ) where φ is
a set of features among the following:
• n: number of nodes in the graph.
• m: number of links in the graph.
• t: number of triangles in the graph.
• s: number of nodes in the community.
• l2: number of links with both end nodes in the community.
• l1: number of links with exactly one node in the community.
• t3: number of triangles with three nodes in the community.
• t2: number of triangles with exactly two nodes in the community.
• t1: number of triangles with exactly one node in the community.

Many quality functions of the literature can be written under that form such as conductance
φ = l1

min(2·l2+l1,2·m−2·l2−l1) or cohesion C = t3
(s

3)
× t3

t3+t2
[3].

The reason we bound our algorithm to these features is practical: we will optimize the input
function in a greedy way by adding or removing nodes one at a time starting from a small set
of nodes, we thus need to be able to evaluate the increase or decrease of the function extremely
quickly and these parameters allows to do it. In particular, for the features related to triangles,
we rely on the compact-forward algorithm detailed in [5] which allows to list all triangles in
very-large real world graphs.

2.2 Optimization heuristics
We focus only on greedy and stochastic approaches. Given a node of interest u and a quality
function f , a possible optimization heuristic consists in the following three steps that can be
changed independently in our program.
• Initialization: start from a community containing only one node, or two linked nodes,

or a node and all its neighbors.
• Optimization: at each iteration, add a randomly chosen node, neighbor of the commu-

nity C, that increases the quality f . It is also possible to add the node that leads to the
highest increase and/or to authorize the removal of a node.
• Stop: stop when the quality function can no longer be increased, i.e., when a local

maximum has been reached. It is also possible to add the least quality-decreasing node
with the hope that it will improve even more afterwards and return the set of nodes of
highest quality obtained.

Therefore, given a quality function and a seed community, the optimization grows this seed
to a full community. Since the optimization step is stochastic, two execution starting from the
same seed community can give different results.

2.3 Cleaning procedures
Since the optimization is to be repeated several times using different seed communities and as
two different optimizations can lead to similar final communities, it is important to clean these
obtained sets of nodes. There are several ways to do that, which all require to compute the
similarity between two sets of nodes. For this we use the F1 similarity: given two sets a and b
the similarity is given by F1(a, b) = 2 |a∩b|

|a|+|b| . We say that two sets are similar if their similarity
is higher than a given threshold. We use the following cleaning procedures depending on the
order the communities are examined: (i) process the obtained sets of nodes on-the-fly or (ii)
process the obtained sets of nodes in decreasing order of quality. In both cases a new set of
nodes is kept if and only if it is not similar to a previously processed set of nodes.

Amazon DBLP Youtube LiveJournal Orkut
0.0

0.1

0.2

0.3

0.4

0.5

S
co

re

SCD NMI
MOCDA NMI
SCD F1
MOCDA F1

FIG. 1: Favr
1 and NMI scores using ground truth

Note that other cleaning procedures could also be investigated such as doing the intersection
or union of found communities in some way, rather than simply removing sets.

Once the communities are cleaned, the algorithm only outputs the communities that were
found to be similar to another one k or more times. This redundancy test states that a
community found only once may be less relevant than a community found a large number of
times.
Implementation details. Several solutions had to be found in order to obtain a program
efficient in terms of time and memory. We were able to check whether a quality function of
the type f(n,m, t, s, l1, l2) (resp. f(n,m, t, s, l1, l2, t1, t2, t3)) increases or decreases under the
addition or deletion of a node u in constant time and proceed to the actual addition or deletion
in O(du) time (resp. O(

∑
v∈N(u) dv)) in case f indeed increases while using linear memory. For

the cleaning procedure, we were able to compute the maximum F1-score between the new
community and an already found one in time O(s · t) in the worst case, where s is the size of
the found community and t is the maximum number of communities a node belongs to. Note
that s and t are, in practice, very small compared to the size of the graph leading to a nearly
linear cleaning procedure in terms of the number of communities.

3 Experimental evaluation
A wide range of methods have been designed to detect communities in graphs and we refer to
the following reviews of existing methods [1, 9, 4, 2]. We compared our algorithm using default
options to several algorithms including the Louvain method, BIGCLAM and OSLOM but we
report the results only for SCD [8] as it performed better and faster than the other methods.
SCD has been shown to lead to a non-overlapping and non-exhaustive community structure
that is more similar to the real overlapping community structure of some real-world networks
than the overlapping community structure unfolded by some state-of-the-art algorithms.

We tried 16 quality functions such as conductance, average degree, edit distance to an
isolated clique and cohesion among others. The quality function leading to the best results on
all networks was l2

n1.5 . We also tried several optimization heuristics and cleaning procedures and
the best trade-off between time and accuracy is obtained by a stochastic optimization allowing
removal of nodes (we do 2 · n optimizations, each time starting from a randomly chosen node)
and on-the-fly cleaning (simply outputting all unique communities found at least twice).

To test our algorithm we applied our method on networks with a known community struc-
ture [6]. In order to compare the ground truth and the structure found by MOCDA and SCD,
we used the Normalized Mutual Information (NMI) [7] and the Favr

1 [8]. Figure 1 shows the
NMI and the Favr

1 [8]. The larger are these metrics the more similar are the two community
structures. Table 1 shows the running time on a laptop with a CPU Intel i7-6500U at 2.50GHz
and 16Go of RAM. As we can see, even though our algorithm is slower than SCD, it outper-
forms it on four of the five datsests. Note that SCD has been shown to be a very competitive
method, our algorithm relying on these three simple modules is thus a very promising tool.

Algorithm Amazon DBLP Youtube LiveJ. Orkut
SCD 4.5 sec 4 sec 23 sec 8.5 min 41 min

MOCDA 4.9 sec 10.2 sec 19.1 min 83.1 min 37.9 h

TAB. 1: Running time comparison

4 Conclusion
We proposed a generic and modular algorithm to extract overlapping communities in large
networks using a local-to-global approach. This algorithm, using default options, gives better
results in most real-world graphs than a state-of-the-art algorithm, even though it is slower.

For future work, we first plan to parallelize the algorithm since the optimization procedure
can be performed independently from several seed communities. Furthermore, we want to
add more complex features, such as cliques of size more than 3 or other motifs that can be
computed efficiently on large networks. We also plan to study in depth the impact of these
parameters on the obtained results.

Learning which combinations of modules (quality function, optimization heuristic and clean-
ing procedure) perform best in an automatic way is also an interesting research perspective.

More important still, the modular design of MOCDA enables anybody to create and test its
own quality function which will meet its needs.

References
[1] Santo Fortunato. Community detection in graphs. Physics reports, 486(3):75–174, 2010.

[2] Santo Fortunato and Darko Hric. Community detection in networks: A user guide. Physics
Reports, 2016.

[3] Adrien Friggeri, Guillaume Chelius, and Eric Fleury. Triangles to capture social cohesion.
In SocialCom, pages 258–265. IEEE, 2011.

[4] Rushed Kanawati. Seed-centric approaches for community detection in complex net-
works. In International Conference on Social Computing and Social Media, pages 197–208.
Springer, 2014.

[5] Matthieu Latapy. Main-memory triangle computations for very large (sparse (power-law))
graphs. Theoretical Computer Science, 407(1):458–473, 2008.

[6] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, June 2014.

[7] Aaron F McDaid, Derek Greene, and Neil Hurley. Normalized mutual information to
evaluate overlapping community finding algorithms. arXiv preprint, 2011.

[8] Arnau Prat-Pérez, David Dominguez-Sal, and Josep-LLuis Larriba-Pey. High quality, scal-
able and parallel community detection for large real graphs. In WWW, pages 225–236.
ACM, 2014.

[9] Jierui Xie, Stephen Kelley, and Boleslaw K Szymanski. Overlapping community detection
in networks: The state-of-the-art and comparative study. Acm computing surveys (csur),
45(4):43, 2013.

