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ABSTRACT
Clique counts reveal important properties about the
structure of massive graphs, especially social networks.
The simple setting of just 3-cliques (triangles) has received
much attention from the research community. For larger
cliques (even, say 6-cliques) the problem quickly becomes
intractable because of combinatorial explosion. Most
methods used for triangle counting do not scale for large
cliques, and existing algorithms require massive parallelism
to be feasible.

We present a new randomized algorithm that provably
approximates the number of k-cliques, for any constant
k. The key insight is the use of (strengthenings of) the
classic Turán’s theorem: this claims that if the edge density
of a graph is sufficiently high, the k-clique density must
be non-trivial. We define a combinatorial structure called
a Turán shadow, the construction of which leads to fast
algorithms for clique counting.

We design a practical heuristic, called Turán-shadow,
based on this theoretical algorithm, and test it on a large
class of test graphs. In all cases, Turán-shadow has less
than 2% error, and runs in a fraction of the time used by
well-tuned exact algorithms. We do detailed comparisons
with a range of other sampling algorithms, and find that
Turán-shadow is generally much faster and more accurate.
For example, Turán-shadow estimates all clique numbers
up to size 10 in social network with over a hundred million
edges. This is done in less than three hours on a single
commodity machine.
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1. INTRODUCTION
Pattern counting is an important graph analysis tool in

many domains: anomaly detection, social network analysis,
bioinformatics among others [21, 27, 10, 29, 22, 17]. Many
real world graphs show significantly higher counts of certain
patterns than one would expect in a random graph [21, 46,
27]. This technique has been referred to with a variety of
names: subgraph analysis, motif counting, graphlet analysis,
etc. But the fundamental task is to count the occurrence
of a small pattern graph in a large input graph. In all
such applications, it is essential to have fast algorithms for
pattern counting.

It is well-known that certain patterns capture specific
semantic relationships, and thus the social dynamics are
reflected in these graph structures. The most famous such
pattern is the triangle, which consists of three vertices
connected to each other. Triangle counting has a rich history
in the social sciences and network science [21, 46, 10, 47].

We focus on the more general problem of clique counting.
A k-clique is a set of k vertices that are all connected to each
other; thus, a triangle is a 3-clique. Cliques are extremely
significant in social network analysis (Chap. 11 of [20] and
Chap. 2 of [23]). They are the archetypal example of a dense
subgraph, and a number of recent results use cliques to find
large, dense subregions of a network [32, 41, 28, 43].

1.1 Problem Statement
Given an undirected graph G = (V,E), a k-clique is a set

S of k vertices in V with all pairs in S connected by an edge.
The problem is to count the number of k-cliques, for varying
values of k. Our aim is to get all clique counts for k ≤ 10.

The primary challenge is combinatorial explosion. An
autonomous system network with ten million edges has
more than a trillion 10-cliques. Any enumeration procedure
is doomed to failure. Under complexity theoretical
assumptions, clique counting is believed to be exponential in
the size k [11], and we cannot hope to get a good worst-case
algorithm. Our aim is to employ randomized sampling
methods for clique counting, which have seen some success
in counting triangles and small patterns [42, 35, 25]. We
stress that we make no distributional assumption on the
graph. All probabilities are over the internal randomness of
the algorithm itself (which is independent of the instance).

1.2 Main contributions
Our main theoretical result is a randomized algorithm

Turán-shadow that approximates the k-clique count, for
any constant k. We implement this algorithm on a
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Figure 1: Summary of behavior of Turán-shadow over several datasets. Fig. 1i shows the percent relative error in the
estimates for k=7 given by Turán-shadow. We only show results for graphs for which we were able to obtain exact counts
using either brute force enumeration, or from the results of [18]. The errors are always < 2% and mostly < 1%. Fig. 1ii shows
the time taken by Turán-shadow for k=7 and k=10. Fig. 1iii shows the speedup (time of algorithm/time of Turán-shadow)
over other state of the art algorithms for k=7. The red line indicates a speedup of 1. We could not give a figure for speedup
for k=10 because for most instances no competing algorithm terminated in min(7 hours, 100 times Turán-shadow time).

commodity machine and get k-clique counts (for all k ≤ 10)
on a variety of data sets, the largest of which has 100M
edges. The main features of our work follow.

Extremal combinatorics meets sampling. Our
novelty is in the algorithmic use of classic extremal
combinatorics results on clique densities. Seminal results of
Turán [44] and Erdős [16] provide bounds on the number
of cliques in a sufficiently dense graph. Turán-shadow
tries to cover G by a carefully chosen collection of dense
subgraphs that contains all cliques, called a Turán-shadow.
It then uses standard techniques to design an unbiased
estimator for the clique count. Crucially, the result of
Erdős [16] (a quantitative version of Turán’s theorem) is
used to bound the variance of the estimator.
We provide a detailed theoretical analysis of
Turán-shadow, proving correctness and analyzing its
time complexity. The running time of our algorithm is
bounded by the time to construct the Turán-shadow, which
as we shall see, is quite feasible in all the experiments we
run.

Extremely fast. In the worst case, we cannot expect
the Turán-shadow to be small, as that would imply new
theoretical bounds for clique counting. But in practice on a
wide variety of real graphs, we observe it to be much smaller
than the worst-case bound. Thus, Turán-shadow can be
made into a practical algorithm, which also has provable
bounds. We implement Turán-shadow and run it on a
commodity machine. Fig. 1ii shows the time required for
Turán-shadow to obtain estimates for k = 7 and k = 10
in seconds. The as-skitter graph is processed in less than 3
minutes, despite there being billions of 7-cliques and trillions
of 10-cliques. All graphs are processed in minutes, except
for an Orkut social network with more than 100M edges
(Turán-shadow handles this graph within 2.5 hours). To
the best of our knowledge, there is no existing work that gets
comparable results. An algorithm of Finocchi et al. also
computes clique counts, but employs MapReduce on the
same datasets [18]. We only require a single machine to
get a good approximation.
We tested Turán-shadow against a number of state
of the art algorithmic techniques (color coding [4], edge
sampling [42], GRAFT [30]). For 10-clique counting,

none of these algorithms terminate for all instances even
in 7 hours; Turán-shadow runs in minutes on all but
one instance (where it takes less than 2.5 hours). For
7-clique counting, Turán-shadow is typically 10-100 times
faster than competing algorithms. (A notable exception is
com-orkut, where an edge sampling algorithm runs much
faster than Turán-shadow.)
Excellent accuracy. Turán-shadow has extremely

small variance, and computes accurate results (in all
instances we could verify). We compute exact results
for 7-clique numbers, and compare with the output of
Turán-shadow. In Fig. 1i, we see that the accuracy is well
within 2% (relative error) of the true answer for all datasets.
We do detailed experiments to measure variance, and in all
cases, Turán-shadow is accurate.
The efficiency and accuracy of Turán-shadow allows us to
get clique counts for a variety of graphs, and track how the
counts change as k increases. We seem to get two categories
of graphs: those where the count increases (exponentially)
with k, and those where it decreases with k, see Fig. 5. This
provides a new lens to view social networks, and we hope
Turán-shadow can become a new tool for pattern analysis.

1.3 Related Work
The importance of pattern counts gained attention in

bioinformatics with a seminal paper of Milo et al. [27],
though it has been studied for many decades in the social
sciences [21]. Triangle counting and its use has an incredibly
rich history, and is used in applications as diverse as spam
detection [6], graph modeling [34], and role detection [10].
Counting four cliques is mostly feasible using some recent
developments in sampling and exact algorithms [25, 2].

Clique counts are an important part of recent dense
subgraph discovery algorithms [32, 41]. Cliques also play
an important role in understanding dynamics of social
capital [24], and their importance in the social sciences
is well documented [20, 23]. In topological approaches
to network analysis, cliques are the fundamental building
blocks used to construct simplicial structures [36].

From an algorithmic perspective, clique counting has
received much attention from the theoretical computer
science community [12, 4, 11, 45]. Maximal clique
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enumeration has been an important topic [3, 37, 15] since
the seminal algorithm of Bron-Kerbosch [9]. Practical
algorithms for finding the maximum clique were given by
Rossi et al. using branch and bound methods [31].

Most relevant to our work is a classic algorithm of
Chiba and Nishizeki [12]. This work introduces graph
orientations to reduce the search time and provides a
theoretical connection to graph arboricity. We also apply
this technique in Turán-shadow.

The closest result to our work is a recent MapReduce
algorithm of Finocchi et al. for clique counting [18].
This result applies the orientation technique of [12], and
creates a large set of small (directed) egonets. Clique
counting overall reduces to clique counting in each of these
egonets, and this can be parallelized using MapReduce. We
experiment on the same graphs used in [18] (particularly,
some of the largest ones) and get accurate results on a
single, commodity machine (as opposed to using a cluster).
Alternate MapReduce methods using multi-way joins have
been proposed, though this is theoretical and not tested on
real data [1].

A number of randomized techniques have been proposed
for pattern counting, and can be used to design algorithms
for clique counting. Most prominent are color coding [4,
22, 7, 48] and edge sampling methods [42, 40, 30]. (MCMC
methods [8] typically do not scale for graphs with millions of
vertices [25].) We perform detailed comparisons with these
methods, and conclude that they do not scale for larger
clique counting.

2. MAIN IDEAS
The starting point for our result is a seminal theorem

of Turán [44]: if the edge density of a graph is more than
1− 1

k−1
, then it must contain a k-clique. (The density bound

is often called the Turán density for k.) Erdős proved a
stronger version [16]. Suppose the graph has n vertices.
Then in this case, it contains Ω(nk−2) k-cliques!

Consider the trivial randomized algorithm to estimate
k-cliques. Simply sample a uniform random set of k vertices
and check if they form a clique. Denote the number of
k-cliques by C, then the success probability is C/

(
n
k

)
. Thus,

we can estimate this probability using
(
n
k

)
/C samples. By

Erdős’ bound, C = Ω(nk−2). Thus, if the density of a
graph (with n vertices) is above the Turán density, one can
estimate the number of k-cliques using O(n2) samples.

Of course, the input graph G is unlikely to have such a
high density, and O(n2) is a large bound. We try to cover all
k-cliques in G using a collection of dense subgraphs. This
collection is called a Turán shadow. We employ orientation
techniques from Chiba-Nishizeki to recursively construct a
shadow [12].

We take the degeneracy (k-core) ordering in G [33]. It
is well-known that outdegrees are typically small in this
ordering. To count k-cliques in G, it suffices to count
(k− 1)-cliques in every outneighborhood. (This is the main
idea in the MapReduce algorithms of Finocchi et al [18].)
If an outneighborhood has density higher than the Turán
density for (k− 1), we add this set/induced subgraph to the
Turán shadow. If not, we recursively employ this scheme to
find denser sets.

When the process terminates, we have a collection of sets
(or induced subgraphs) such that each has density above

the Turán threshold (for some appropriate k′ for each set).
Furthermore, the sum of cliques (k′-cliques, for the same
k′) is the number of k-cliques in G. Now, we can hope to
use the randomized procedure to estimate the number of
k′-cliques in each set of the Turán shadow. By a theorem of
Chiba-Nishizeki [12], we can argue that number of vertices
in any set of the Turán shadow is at most

√
2m (where m is

the number of edges in G). Thus, O(m) samples suffices to
estimate clique counts for any set in the Turán shadow.

But the Turán shadow has many sets, and it is infeasible to
spend O(m) samples for each set. We employ a randomized
trick. We only need to approximate the sum of clique counts
over the shadow, and can use random sampling for that
purpose. Working through the math, we effectively set up
a distribution over the sets in the Turán shadow. We pick
a set from this distribution, pick some subset of random
vertices, and check if they form a clique. The probability
of this event can be related to the number of k-cliques in
G. Furthermore, we can prove that O(m) samples suffice to
estimate this probability. All in all, after constructing the
Turán shadow, k-clique counting can be done in O(m) time.

2.1 Main theorem and significance
The formal version of the main theorem is Theorem 5.6.

It requires a fair bit of terminology to state. So we state an
informal version that maintains the spirit of our main result.
This should provide the reader with a sense of what we can
hope to prove. We will define the Turán shadow formally
in later sections. But it basically refers to the construct
described above.

Theorem 2.1. [Informal] Consider graph G = (V,E)
with n vertices, m edges, and maximum core number α. Let
S be the Turán k-clique shadow of G, and let |S| be the
number of sets in S.

Given any δ > 0, ε > 0, k, with probability at least 1−δ, the
procedure Turán-shadow outputs a (1 + ε)-multiplicative
approximation to the number of k-cliques in G. The running
time is linear in |S| and mα log(1/δ)/ε2. The storage is
linear in |S|.

Observe that the size of the shadow is critical to the
procedure’s efficiency. As long as the number of sets in
the Turán shadow is small, the extra running time overhead
is only linear in m. And in practice, we observe that the
Turán shadow scales linearly with graph size, leading to a
practically viable algorithm.

Outline: In §3, we formally describe Turán’s theorem
and set some terminology. §4 defines (saturated) shadows,
and shows how to construct efficient sampling algorithms
for clique counting from shadow. §5 describes the recursive
construction of the Turán shadow. In §5.1, we describe
the final procedure Turán-shadow, and prove (the formal
version of) Theorem 2.1. Finally, in §6, we detail our
empirical study of Turán-shadow and comparison with the
state of the art.

3. TURÁN’S THEOREM
For any arbitrary graph H = (V (H), E(H)), let

Ci(H) denote the set of cliques in H, and ρi(H) :=

|Ci(H)|/
(|V (H)|

i

)
is the i-clique density. Note that ρ2(H)

is the standard notion of edge density.
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The following theorem of Turán is one of the most
important results in extremal graph theory.

Theorem 3.1. (Turán [44]) For any graph H, if ρ2(H) >
1− 1

k−1
, then H contains a k-clique.

This is tight, as evidenced by the complete (k−1)-partite
graph Tn,k−1 (also called the Turán graph). In a remarkable
generalization, Erdős proved that if an n-vertex graph has
even one more edge than Tn,k−1, it must contain many
k-cliques. One can think of this theorem as a quantified
version of Turán’s theorem.

Theorem 3.2. (Erdős [16]) For any graph H over n
vertices, if ρ2(H) > 1 − 1

k−1
, then H contains at least

(n/(k − 1))k−2 k-cliques.

It will be convenient to express this result in terms
on k-clique densities. We introduce some notation: let
f(k) = kk−2/k!. By Stirling’s approximation, f(k) is well

approximated by ek/
√

2πk5. Note that f(k) is some fixed
constant, for constant k. This corollary will be critical to
our analysis.

Corollary 3.3. For any graph H over n vertices, if
ρ2(H) > 1− 1

k−1
, then ρk(H) ≥ 1/f(k)n2.

Proof. By Theorem 3.2, H has at least ( n
(k−1)

)k−2

k-cliques. Thus,

ρk(H) ≥
( n
(k−1)

)k−2(
n
k

) ≥ nk−2/nk×k!/(k−1)k−2 ≥ 1/(f(k)n2)

4. CLIQUE SHADOWS
A key concept in our algorithm is that of clique shadows.

Consider graph G = (V,E). For any set S ⊆ V , we let C`(S)
denote the set of `-cliques contained in S.

Definition 4.1. A k-clique shadow S for graph G is a
multiset of tuples {(Si, `i)} where Si ⊆ V and `i ∈ N such
that: there is a bijection between Ck(G) and

⋃
(S,`)∈S C`(S).

Furthermore, a k-clique shadow S is γ-saturated if
∀(S, `) ∈ S, ρ`(S) ≥ γ.

Intuitively, it is a collection of subgraphs, such that the
sum of clique counts within them is the total clique count of
G. Note that for each set S in the shadow, the associated
clique size ` is different (for different S). Observe that
{(V, k)} is trivally a clique shadow. But it is highly unlikely
to be saturated.

It is important to define the size of S, which is really the
storage required to represent it.

Definition 4.2. The representation size of S is denoted
size(S), and is

∑
(S,`)∈S |S|.

When a k-clique shadow S is γ-saturated, each (S, `) ∈ S
has many `-cliques. Thus, one can employ random sampling
within each S to estimate |C`(S)|, and thereby estimate
Ck(G). We use a sampling trick to show that we do not
need to estimate all |C`(S)|; instead we only need O(1/γ)
samples in total.

Algorithm 1: sample(S, γ, k, ε, δ)
S is γ-saturated k-clique shadow
ε, δ are error parameters

1 For each (S, `) ∈ S, set w(S) =
(|S|
`

)
;

2 Set probability distribution D over S where
p(S) = w(S)/

∑
(S,`)∈S w(S) ;

3 For r ∈ 1, 2, . . . , t = 20
γε2

log(1/δ);

4 Independently sample (S, `) from D;
5 Choose a u.a.r. `-tuple A from S;
6 If A forms `-clique, set indicator Xr = 1. Else,
Xr = 0 ;

7 Output
∑

r Xr

t

∑
(S,`)∈S

(|S|
`

)
as estimate for |Ck(G)|;

Theorem 4.3. Suppose S is a γ-saturated k-clique
shadow for G. The procedure sample(S) outputs an estimate

Ĉ such |Ĉ − |Ck(G)|| ≤ ε|Ck(G)| with probability > 1− δ.
The running time of sample(S) is O(size(S) +

1
γε2

log(1/δ)).

Proof. We remind the reader that w(S) =
(|S|
`

)
. Set

α = |Ck(G)|/
∑
S∈S w(S). Observe that

Pr[Xr = 1] =
∑

(S,`)∈S

Pr[(S, `) is chosen]

× Pr[`-clique chosen in S|(S, `) is chosen]

The former probability is exactly w(S)/
∑
S∈S w(S), and

the latter is exactly |C`(S)|/
(|S|
`

)
= |C`(S)|/w(S). So,

Pr[Xr = 1] =
∑

(S,`)∈S

|C`(S)|/
∑
S∈S

w(S)

Since S is a k-clique shadow,
∑

(S,`)∈S |C`(S)| = |Ck(G)|.
Thus, Pr[Xr = 1] = α. By the saturation property, ρ`(S) ≥
γ, equivalent to |C`(S)| ≥ γw(S). So

∑
S∈S |C`(S)| ≥

γ
∑
S∈S w(S). That implies that α ≥ γ. By linearity of

expectation, E[
∑
r≤tXr] =

∑
r≤tE[Xr] ≥ γt.

Note that all the Xrs come from independent trials. (The
graph structure plays no role, since the distribution of each
Xr does not change upon conditioning on the other Xrs.)
By a multiplicative Chernoff bound (Thm 1.1 of [13]),

Pr[
∑
r

Xr/t ≤ α(1− ε)] ≤ exp(−ε2E[
∑
r

Xr]/3)

≤ exp(−ε2γt/3) = exp(−5 log(1/δ)) ≤ δ/5.

By an analogous upper tail bound, Pr[
∑
rXr/t ≥ α(1+ε)] ≤

δ/5. By the union bound, with probability at least 1−2δ/5,
α(1 − ε) ≤

∑
rXr/t ≤ α(1 + ε). Note that the output

Ĉ = (
∑
rXr/t)

∑
S∈S w(S). We multiply the bound above

on
∑
rXr/t by

∑
S∈S w(S), and note that α

∑
S∈S w(S) =

|Ck(G)| to complete the proof.

We stress the significance of Theorem 4.3. Once we get a
γ-saturated clique shadow S, |Ck(G)| can be approximated
in time linear in size(S). The number of samples chosen
only depends on γ and the approximation parameters, not
on the graph size.

But how to actually generate a saturated clique shadow?
Saturation appears to be extremely difficult to enforce. This
is where the theorem of Erdős (Theorem 3.2) saves the day.
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It merely suffices to make the edge density of each set
in the clique shadow high enough. The k-clique density
automatically becomes large enough.

Theorem 4.4. Consider a k-clique shadow S such
that ∀(S, `) ∈ S, ρ2(S) > 1 − 1

`−1
. Let γ =

1/max(S,`)∈S f(`)|S|2. Then, S is γ-saturated.

Proof. By Corollary 3.3, for every (S, `) ∈ S, ρ`(S) ≥
1/(f(`)|S|2). We simply set γ to be the minimum such
density over all (S, `) ∈ S.

5. CONSTRUCTING SATURATED
CLIQUE SHADOWS

We use a refinement process to construct saturated clique
shadows. We start with the trivial shadow S = {(V, k)}
and iteratively “refine” it until the saturation property is
satisfied. By Theorem 4.4, we just have to ensure edge
densities in each set are sufficiently large.

For any set S ⊂ V , let G|S be the subgraph of G induced
by S. Given an unsaturated k-clique shadow S, we find some
(S, `) ∈ S such that ρ2(S) ≤ 1− 1

`−1
. By iterating over the

vertices, we replace (S, `) by various neighborhoods in G|S
to get a new shadow. We would like the edge densities of
these neighborhoods to increase, in the hope of crossing the
threshold given in Theorem 4.4.

The key insight is to use the degeneracy ordering to
construct specific neighborhoods of high density that also
yield a valid shadow. This is basically the classic graph
theoretic technique of computing core decompositions,
which is widely used in large-graph analysis [33, 19]. As
mentioned earlier, this idea is used for fast clique counting
as well [12, 18].

Definition 5.1. For a (labeled) graph G = (V,E),
a degeneracy ordering is a permutation of V given as
v1, v2, . . . , vn such that: for each i ≤ n, vi is the minimum
degree vertex in the subgraph induced by vi, vi+1, . . . , vn. (As
defined, this ordering is not unique, but we can enforce
uniqueness by breaking ties by vertex id.)

The degree of vi in G|{vi,...,vn} is the core number of
vi. The largest core number is called the degeneracy of G,
denoted α(G).

The degeneracy DAG of G, denoted D(G) is obtained
by orienting edges in degeneracy order. In other words,
every edge (u, v) ∈ G is directed from lower to higher in
the degeneracy ordering.

The degeneracy ordering is the deletion time of
the standard linear time procedure that computes the
degeneracy [26]. It is convenient for us to think of the
degeneracy in terms of graph orientations. As defined
earlier, any permutation on V can be used to make a
DAG out of G. We use this idea for generating saturated
clique shadows. Essentially, while G may be sparse,
out-neighborhoods in G are typically dense. (This has been
observed in numerous results on dense subgraph discovery [5,
38, 32].)

We now define the procedure Shadow-Finder(G, k), which
works by a simple, iterative refinement procedure. Think of
T as the current working set, and S as the final output. We
take a set (S, `) in T , and construct all outneighborhoods in
the degeneracy DAG. Any such set whose density is above

Algorithm 2: Shadow-Finder(G, k)

1 Initialize T = {(V, k)} and S = ∅;
2 While ∃(S, `) ∈ T such that ρ2(S) ≤ 1− 1

`−1
;

3 Construct the degeneracy DAG D(G|S);

4 Let N+
s denote the outneighborhood (within

D(G|S)) of s ∈ S;
5 Delete (S, `) from T ;
6 For each s ∈ S;

7 If ` ≤ 2 or ρ2(N+
s ) > 1− 1

`−2
;

8 Add (N+
s , `− 1) to S;

9 Else, add (N+
s , `− 1) to T ;

10 Output S;

the Turán threshold goes to S (the output), otherwise, it
goes to T (back to the working set).

It is useful to define the recursion tree T of this process as
follows. Every pair (S, `) that is ever part of T is a node in
T . The children of (S, `) are precisely the pairs (N+

s , `− 1)
added in Step 8. (At the point, (S, `) is deleted from T , and
all the (N+

s , ` − 1) are added.) Observe that the root of T
is (V, k), and the leaves are precisely the final output S.

Theorem 5.2. The output S of Shadow-Finder(G, k)
is a γ-saturated k-clique shadow, where γ =
1/max(S,`)∈S(f(`)|S|2).

Proof. We first prove by induction the following loop
invariant for Shadow-Finder: T ∪ S is always a k-clique
shadow. For the base case, note that at the beginning, T =
{(V, k)} and S = ∅. For the induction step, assume that
T∪S is a k-clique shadow at the beginning of some iteration.
The element (S, `) is deleted from T . Each (N+

s , ` − 1) is
added to S or to T .

Thus, it suffices to prove that there is a bijection mapping
between C`(S) and

⋃
s∈S C`−1(N+

s ). (By the induction
hypothesis, we can then construct a bijection between Ck(G)
and the appropriate cliques in T ∪S.) Consider an `-clique
K in S. Set s to be the minimum vertex according to the
degeneracy ordering in D(G|S). Observe that the remaining
vertices form an (`−1)-clique inN+

s , which we map theK to.
This is a bijection, because every clique K can be mapped to
a (unique) (`−1)-clique, and furthermore, every (`−1)-clique
in
⋃
s∈S C`−1(N+

s ) is in the image of this mapping.
Thus, when Shadow-Finder terminates, T ∪S is a k-clique

shadow. Since T must be empty, S is a k-clique shadow.
Furthermore, a pair (S, `) is in S iff ρ2(S) > 1 − 1

`−1
. By

Theorem 4.4, S is 1/max(S,`)∈S(f(`)|S|2)-saturated.

We have a simple, but important claim that bounds the
size of any set in the shadow by the degeneracy.

Claim 5.3. Consider non-root (S, `) ∈ T . Then |S| ≤
α(G).

Proof. Suppose the parent of (S, `) is (P, `+1). Observe
that S is the outneighborhood of some node p in the DAG
D(G|P ). Thus, |S| ≤ α(G|P ). The degeneracy can never
be larger in a subgraph. (This is apparent by an alternate
definition of degeneracy, the maximum smallest degree of an
induced subgraph [26].) Hence, α(G|P ) ≤ α(G).

Theorem 5.4. The running time of
Shadow-Finder(G, k) is O(α(G)size(S) + m + n). The
total storage is O(size(S) +m+ n).
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Proof. Every time we add (N+
S , ` − 1) (Step 8) to T ,

we explicitly construct the graph G|
N+

s
. Thus, we can

guarantee that for every (S, `) present in T , we can make
queries in the graph G|S . This construction takes O(|S|2)
time, to query every pair in S. (This is not required when
S = V , since G|V = G.) Furthermore, this construction is
done for every (S, `) ∈ T , except for the root node in T .
Once we have G|S , the degeneracy order can be computed
in time linear in the number of edges in G|S [26].

Thus, the running time can be bounded by
O(
∑

(S,`)∈T :S 6=V |S|
2 + m + n). By Claim 5.3, we can

bound
∑

(S,`)∈T :S 6=V |S|
2 = O(α(G)

∑
(S,`)∈T |S|). We

split the sum over leaves and non-leaves. The sum
over leaves is precisely a sum over the sets in S, so
that yields O(α(G)size(S)). It suffices to prove that∑

(S,`)∈T :S non-leaf |S| = O(size(S)), which we show next.

Observe that a non-leaf node (S, `) in T has exactly |S|
children, one for each vertex s ∈ S. Thus,∑

(S,`)∈T :(S,`)non-leaf

|S| =
∑

(S,`)∈T

# children of (S, `)

= # edges in T

All internal nodes in T have at least 2 children, so the
number of edges in T is at most twice the number of leaves
in T . But this is exactly the number of sets in the output
S, which is at most size(S).

The total storage is O(
∑

(S,`)∈T |S| + m + n), which is

O(size(S) +m+ n) by the above arguments.

We now formally define the Turán shadow to be output
of this procedure.

Definition 5.5. The k-clique Turán shadow of G is the
output of Shadow-Finder(G, k).

5.1 Putting it all together

Algorithm 3: Turán-shadow(G, k, ε, δ)

1 Compute S = Shadow-Finder(G, k);

2 Set γ = 1/max(S,`)∈S(f(`)|S|2);

3 Output Ĉk = sample(G, k, γ, ε, δ);

Theorem 5.6. Consider graph G = (V,E) with m edges,
n vertices, and degeneracy α(G). Assume m ≤ n2/4. Let S
be the Turán k-clique shadow of G.

With probability at least 1 − δ (this probability is over
the randomness of Turán-shadow; there is no stochastic
assumption on G), |Ĉk − |Ck(G)|| ≤ ε|Ck(G)|.

The running time of Turán-shadow is O(α(G)size(S)+
f(k)m log(1/δ)/ε2 + n) and the total storage is O(size(S) +
m+ n).

Proof. By Theorem 5.2, S is γ-saturated, for γ =
1/max(S,`)∈S f(`)|S|2. Since m ≤ n2/4, the procedure
Shadow-Finder(G, k) cannot just output {(V, k)}. All leaves
in the recursion tree must have depth at least 2, and by
Claim 5.3, for all (S, `) ∈ S, |S| ≤ α(G). A classic bound on
the degeneracy asserts that α(G) ≤

√
2m (Lemma 1 of [12]).

Since f(`) is increasing in `, max(S,`)∈S f(`)|S|2 ≤ 2f(k)m.
Thus, γ = Ω(1/(f(k)m)).

By Theorem 4.3, the running time of sample isO(size(S)+
log(1/δ)/(γε2)), which is O(size(S) + f(k)m log(1/δ)/ε2).
Theorem 4.3 also asserts the accuracy of the output. Adding
the bounds of Theorem 5.4, we prove the running time and
storage bounds.

5.2 The shadow size
The practicality of Turán-shadow hinges on size(S)

being small. It is not hard to prove a worst-case bound,
using the degeneracy.

Claim 5.7. size(S) = O(nα(G)k−2).

Proof. By arguments in the proof of Theorem 5.4, we
can show that size(S) is at most the number of edges in T .
In T , the degree of the root is n, and by Claim 5.3, the
degree of all other nodes is at most α(G). The depth of the
tree is at most k − 1, since the value of ` decreases every
step down the tree. That proves that nαk−2 bound.

This bound is not that interesting, and the
Chiba-Nishizeki algorithm for exact clique enumeration
matches this bound [12]. Indeed, we can design instances
where Claim 5.7 is tight (a set of n/α Erdős-Rényi graphs
Gα,1/3). In any case, beating an exponential dependence on
k for any algorithm is unlikely [11].

The key empirical insight of this paper is that Turán clique
shadows are small for real-world graphs. We explain in more
detail in the next section; Fig. 3 shows that the shadow sizes
are typically less than m, and never more than 10m.

6. EXPERIMENTAL RESULTS
Preliminaries: We implemented our algorithms in C++

and ran our experiments on a commodity machine equipped
with a 3.00GHz Intel Core i7 processor with 8 cores and
256KB L2 cache (per core), 20MB L3 cache, and 128GB
memory.

We performed our experiments on a collection of graphs
from SNAP [49], the largest with more than 100M edges.
The collection includes social networks, web networks, and
infrastructure networks. Each graph is made simple by
ignoring direction. Basic properties of these graphs are
presented in Tab. 1.

In the implementation of Turán-shadow, there is
just one parameter to choose: the number of samples
chosen in Step 2 in sample. Theoretically, it is set to
(20/γε2) log(1/δ); in practice, we just set it to 50K for
all our runs. Note that γ is not a free parameter and is
automatically set in Step 1 of Turán-shadow.

We focus on counting k-cliques for k ranging from 5 to 10.
We ignore k = 3, 4, since there is much existing (scalable)
work for this setting [35, 25, 2]. For the sake of presentation,
we showcase results for k = 7, 10. We focus on k = 10
since no existing algorithm produces results for 10-cliques
in reasonable time. We also show specifics for k = 7, to
contrast with k = 10.

Convergence of Turán-shadow: We picked two
smaller graphs amazon0601 and web-Google for which the
exact k-clique count is known (for all k ∈ [5, 10]). We
choose both k = 7, 10. For each graph, for sample
size in [10K,50K,100K,500K,1M], we perform 100 runs of
the algorithm. We plot the spread of the output of
Turán-shadow, over all these runs. The results are shown
in Fig. 2. The red line denotes the true answer, and there is
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Table 1: Graph properties

k=5 k=7 k=10
graph vertices edges degen max degree estimate % error time estimate % error time estimate % error time
loc-gowalla 1.97E+05 9.50E+05 51 14730 1.46E+07 0.20 2 4.78E+07 0.36 2 1.08E+08 1.63 3
web-Stanford 2.82E+05 1.99E+06 71 38625 6.21E+08 0.00 20 3.47E+10 0.13 43 6.63E+12 - 52
amazon0601 4.03E+05 4.89E+06 10 2752 3.64E+06 0.93 1 9.98E+05 0.95 1 9.77E+03 0.01 1
com-youtube 1.13E+06 2.99E+06 51 28754 7.29E+06 1.08 7 7.85E+06 1.38 8 1.83E+06 0.20 8
web-Google 8.76E+05 4.32E+06 44 6332 1.05E+08 0.10 2 6.06E+08 0.09 2 1.29E+10 0.82 2
web-BerkStan 6.85E+05 6.65E+06 201 84230 2.19E+10 0.00 101 9.30E+12 1.05 214 5.79E+16 - 262
as-skitter 1.70E+06 1.11E+07 111 35455 1.17E+09 0.01 153 7.30E+10 0.23 164 2.28E+13 - 180
cit-Patents 3.77E+06 1.65E+07 64 793 3.05E+06 0.34 10 1.89E+06 0.83 9 2.55E+03 4.46 9
soc-pokec 1.63E+06 2.23E+07 47 14854 5.29E+07 0.13 42 8.43E+07 0.48 45 1.98E+08 0.01 45
com-lj 4.00E+06 3.47E+07 360 14815 2.46E+11 - 106 5.14E+14 - 153 1.47E+19 - 252
com-orkut 3.07E+06 1.17E+08 253 33313 1.57E+10 0.00 3119 3.61E+11 1.97 5587 3.14E+13 - 9298

Table 2: Table shows the sizes, degeneracy, maximum degree of the graphs, the counts of 5, 7 and 10 cliques obtained using
Turán-shadow, the percent relative error in the estimates, and time in seconds required to get the estimates. Some of the
exact counts were obtained from [18] (where available). This is the first such algorithm that obtains these counts with < 2%
error without using any specialized hardware.

a point for the output of every single run. Even for 10-clique
counting, the spread of 100 runs is absolutely minimal. For
50K samples, the range of values is within 2% of the true
answer. This was consistent with all our runs.

Accuracy of Turán-shadow: For many graphs (and
values of k), it was not feasible to get an exact algorithm to
run in reasonable time. The run time of exact procedures
can vary wildly, so we have exact numbers for some larger
graphs but could not generate numbers for smaller graphs.
We collected as many exact results as possible to validate
Turán-shadow. For the sake of presentation, we only show
a snapshot of these results here.

For k = 7, we collected exact results for a collection of
graphs, and for each graph, compared the output of a single
run of Turán-shadow (with 50K samples) with the true
answer. We compute relative error : |true - estimate|/true.
These results are presented in Fig. 1i. Note that the errors
are within 2% in all cases, again consistent with all our runs.

In Tab. 1, we present the output of our algorithm for a
single run on all instances and k = 5, 7, 10. For every graph
where we know the true value, we present the relative error.
Barring one example (cit-Patents for k = 10), all errors
are less than 2%. Even in the worst case, the error is at
most 5%.

Running time: All runtimes are presented in Tab. 1.
(We show the time for a single run, since there was little
variance for different runs on the same graph.) In all
instances except com-orkut, the runtime was a few minutes,
even for graphs with tens of millions of edges. We stress
that these are all on a single machine. For com-orkut, the
runtime is at most 2.5 hours. Previously, such graphs were
processed with MapReduce on clusters [18].

6.1 Comparison with other algorithms
Our exact brute-force procedure is a well-tuned algorithm

that uses the degeneracy ordering and exhaustively searches
outneighborhoods for cliques. This is basically the
procedure of Finetti et al. [18], inspired by the algorithm
of Chiba-Nishizeki [12]. We compare with the following
algorithms.
• Color coding: This is a classic algorithmic technique [4].

For counting k-cliques, the algorithm randomly colors
vertices with one of k colors. Then, the algorithm uses
a brute-force procedure to count polychromatic k-cliques

(where each vertex has a different color). This number is
scaled to give an unbiased estimate, and the coloring helps
cut down the search time of the brute-force procedure. This
method has been applied in practice for numerous pattern
counting problems [22, 7, 48].
• Edge sampling: Edge sampling was discussed by

Tsourakakis et al. in the context of triangle counting [42,
39, 40], though the idea is flexible and can be used for
large patterns [14]. The idea here is to sample each edge
independently with some probability p, and then count
k-cliques in the down-sampled graph. This number is scaled
to give an unbiased estimate for the number of k-cliques.
For clique counting, we observe that minor differences in p
(by 0.1) have huge effects on runtime and accuracy. To do a
fair comparison, we run multiple experiments with varying
p (increments of 0.1), until we reach the smallest p that
consistently yields less than 5% error. (Note that the error of
Turán-shadow is significantly smaller that this.) Timing
comparisons are done with runs for that value of p.
• GRAFT [30]: Rahman et al. give a variant of

edge sampling with better performance for large pattern
counts [30]. The idea is to sample some set of edges, and
exactly count the number of k-cliques on each of these edges.
This can be scaled into an unbiased estimate for the total
number of k-cliques.
As with edge sampling, we increase the number of edge
samples until we get consistently within 5% error. Timing
comparisons are done with this setting. Typical settings
seems to be in the range of 100K to 1M samples. Beyond
that, GRAFT is infeasible, even for graphs with 10M edges.

We focus on k = 7, 10 for clarity. In all cases,
we simply terminate the algorithm if it takes more
than the minimum of 7 hours and 100 times the time
required by Turán-shadow. We present the speedup of
Turán-shadow with respect to all these algorithms in
Fig. 1iii for k=7. For k=10, for most instances, no competing
algorithm terminated.
• k = 7 (Fig. 1iii): Turán-shadow outperformed Color

Coding and GRAFT across all instances. Color Coding
never gave good accuracy, so we ignore it in our speedup
plots. We do note that Edge Sampling gives extremely good
performance in some instances, but can be very slow in
others. For amazon0601, com-youtube, cit-Patents, and
soc-pokec, Edge Sampling is faster than Turán-shadow.

447



104 105 106

Number of samples

0.0

0.5

1.0

C
liq

ue
s

×106

amazon0601, k=7

104 105 106

Number of samples

0.0

0.5

1.0

C
liq

ue
s

×104

amazon0601, k=10

104 105 106

Number of samples

0.0

0.5

C
liq

ue
s

×109

web-Google, k=7

104 105 106

Number of samples

0.0

0.5

1.0

1.5

C
liq

ue
s

×1010

web-Google, k=10

Figure 2: Figure shows convergence over 100 runs of Turán-shadow using 10K, 50K, 100K, 500K and 1M samples each.
Turán-shadow has an extremely low spread and consistently gives very accurate results.
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Figure 3: Figures show the sizes of the Turán shadows
generated for k=7 and k=10 in all the graphs. The runtime
of the algorithm is proportional to the size of the shadow
and crucially, the sizes scale only linearly with the number
of edges.
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Figure 4: Figures show the success ratio (probability of
finding a clique) obtained in the sampling experiments in all
the graphs.

But Turán-shadow handles all these graphs with a minute.
The only exception is com-orkut, where GRAFT is much
faster than Turán-shadow. We note that all other
algorithms can perform extremely poorly on fairly small
graphs: Edge Sampling is 10-100 times slower on a number
of graphs, which have only millions of edges. On the other
hand, Turán-shadow always runs in minutes for these
graphs.
• k = 10 : No competing algorithm is able to handle 10

cliques for all datasets, even in 7 hours (giving a speedup of
anywhere between 3x to 100x). They all generally fail for at
least half of the instances. Turán-shadow gets an answer
for com-orkut within 2.5 hours, and handles all other graphs
in minutes.

6.2 Details about Turán-shadow

Shadow size: In Fig. 3, we plot the size of the k-clique
Turán shadow with respect to the number of edges in each
instance. This is done for k = 7, 10. (The line y = x is drawn
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Figure 5: Figures show the trends in clique counts
of some graphs. While cit-Patents, com-youtube and
amazon0601 show a decreasing trend, all other graphs show
an exponential increase in the number of cliques with clique
size.

as well.) As seen from Theorem 5.6, the size of the shadow
controls the storage and runtime of Turán-shadow. We
see how in almost all instances, the shadow size is around
the number of edges. This empirically explains the efficiency
of Turán-shadow. The worst case is com-orkut, where the
shadow size is at most ten times the number of edges.

Success probability: The final estimate of
Turán-shadow is generated through sample. We
asserted (theoretically) that O(m) samples suffice, and
in practice, we use 50K samples. In Fig. 4, we plot (for
k = 7, 10) the empirical probability of finding a clique in
Step 6 of sample. The higher this is, the fewer samples we
require and the more confidence in the statistical validity
of our estimate. Almost all (empirical) probabilities are
more than 0.1, and 50K samples are more than enough for
convergence.

Trends in clique numbers: Fig. 5 plots the number
of k-cliques (as computed by Turán-shadow) versus k.
(We do not consider all graphs for the sake of clarity.)
Interestingly, there are some graphs where the number of
cliques grows exponentially. This is probably because of a
large clique/dense-subgraph, and it would be interesting to
verify this. For another class of graphs, the clique counts are
consistently decreasing. This seems to classify graphs into
one of two types. We feel further analysis of these trends
would be interesting, and Turán-shadow can be a useful
tool for network analysis.

448



7. REFERENCES

[1] F. N. Afrati, D. Fotakis, and J. D. Ullman. Enumerating
subgraph instances using map-reduce. In International
Conference on Data Engineering (ICDE), pages 62–73, 2013.

[2] N. K. Ahmed, J. Neville, R. A. Rossi, and N. Duffield. Efficient
graphlet counting for large networks. In Proceedings of
International Conference on Data Mining (ICDM), 2015.

[3] E. A. Akkoyunlu. The enumeration of maximal cliques of large
graphs. SIAM J. Comput., 2:1–6, 1973.

[4] N. Alon, R. Yuster, and U. Zwick. Color-coding: A new method
for finding simple paths, cycles and other small subgraphs
within large graphs. In Symposium on the Theory of
Computing (STOC), pages 326–335, 1994.

[5] R. Andersen and K. Chellapilla. Finding dense subgraphs with
size bounds. In Workshop on Algorithms and Models for the
Web-Graph (WAW), pages 25–37, 2009.

[6] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis. Efficient
semi-streaming algorithms for local triangle counting in massive
graphs. In KDD’08, pages 16–24, 2008.

[7] N. Betzler, R. van Bevern, M. R. Fellows, C. Komusiewicz, and
R. Niedermeier. Parameterized algorithmics for finding
connected motifs in biological networks. IEEE/ACM Trans.
Comput. Biology Bioinform., 8(5):1296–1308, 2011.

[8] M. Bhuiyan, M. Rahman, M. Rahman, and M. A. Hasan.
Guise: Uniform sampling of graphlets for large graph analysis.
In Proceedings of International Conference on Data Mining,
pages 91–100, 2012.

[9] C. Bron and J. Kerbosch. Algorithm 457: Finding all cliques of
an undirected graph. Commun. ACM, 16(9):575–577, Sept.
1973.

[10] R. Burt. Structural holes and good ideas. American Journal of
Sociology, 110(2):349–399, 2004.

[11] J. Chen, X. Huang, I. A. Kanj, and G. Xia. Linear FPT
reductions and computational lower bounds. In L. Babai,
editor, Symposium on the Theory of Computing (STOC),
pages 212–221. ACM, 2004.

[12] N. Chiba and T. Nishizeki. Arboricity and subgraph listing
algorithms. SIAM J. Comput., 14:210–223, 1985.

[13] D. Dubhashi and A. Panconesi. Concentration of Measure for
the Analysis of Randomized Algorithms. Cambridge University
Press, 2009.

[14] E. R. Elenberg, K. Shanmugam, M. Borokhovich, and A. G.
Dimakis. Distributed estimation of graph 4-profiles. In
J. Bourdeau, J. Hendler, R. Nkambou, I. Horrocks, and B. Y.
Zhao, editors, World Wide Web (WWW), pages 483–493.
ACM, 2016.

[15] D. Eppstein and D. Strash. Listing all maximal cliques in large
sparse real-world graphs. In P. M. Pardalos and S. Rebennack,
editors, Symposium of Experimental Algorithms, volume 6630
of Lecture Notes in Computer Science, pages 364–375.
Springer, 2011.
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