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Abstract—Can we model complex networks as hypergraphs
and compress them for faster storage, transmission, and mining
of data? In this paper, we propose a modeling and compression
technique that consists of two phases: (i) mapping networks
to hypergraphs by exploiting inherent or structural semantic
features; and (ii) partitioning the resulting hypergraph such
that similar nodes are grouped into a number of possibly
disconnected parts. The partitioned hypergraph is then pro-
cessed in order to yield more structural redundancy to increase
compression. We provide empirical results that compare the
proposed method to random and natural orderings of select
real networks using an information-theoretic measure. When
modeling networks using hypergraphs as proposed here, the
potential for compactness and compression increases, as ob-
served in our experimental evaluation. This benefits a variety
of domains in a variety of ways, such as social networks,
biological systems, and the need to represent these as compactly
as possible for faster execution of queries. We also address
questions for eventual investigation.

Keywords-Graph compression; graph mining; data mining;
hypergraphs; hypergraph partition; hypergraph modeling;
clustering;

I. INTRODUCTION

Many real world problems and situations are effectively
modeled as graphs and investigated using graph-theoretic
tools as well as data mining algorithms. The resulting
graphs are usually very large structures and posit difficulties
with respect to processing or mining. On top of structural
complexity, most graphs curated in various domains also
consist of rich semantic information that could be effectively
exploited by graph processing techniques. However, given
a sufficiently large graph, many techniques and queries
concede their otherwise empirical efficiency unless the graph
is reasonably reduced via compression.

Graph compression remains an active area of research
given the humongous number of edges and vertices (struc-
tured data) as well as auxiliary information and semantic fea-
tures (unstructured data) that comprise a real-world graph.
There are two general ramifications of graph compression.
First, we may compress graphs to save space and time in
order to execute graph algorithms more efficiently. This is
known as algorithmic graph compression [1]. Second, we
may exploit structural similarities among the vertices of a
graph, which hinders at structural graph compression.

Either way, the central objective of graph compression is
to exploit inherent redundancies in a graph. For instance, a
traditional approach at compressing graphs is by attempting
to diminish the number of edges. This can be attained
by grouping similar vertices into a cluster, which is then
connected via an edge to another cluster, a structure referred
to as a ‘cavemen community’ [2]. Another corollary method
is to order nodes based on some structural property, e.g. web
page URLs are sorted lexicographically in [3], and establish
compression-friendly cliques out of them.

Most, if not all, graph compression techniques are solely
applicable to simple graphs, i.e. no other information is
compressed besides what is provided by the structural layout
of vertices and edges. However, real-world problems mod-
eled as graphs possess auxiliary information (e.g. semantic
features, vertex and edge labels, etc.) that should be captured
and compressed along with the graph for at least two
practical reasons. First, capturing such information provides
context to eventual graph processing and management. Sec-
ond, such information may provide clues for more effective
node and edge layouts that could help to achieve higher
compression.

The lack of capturing and incorporating auxiliary infor-
mation on graphs is a weakness of most existing tech-
niques because modeling real world problems merely as
a collection of nodes and edges is, we believe, a naı̈ve
approach. For instance, cellular networks and many other
biological processes cannot be efficiently modeled as simple
graphs because such processes consist of complex functional
relationships between any tuple of objects. An example
of a complex biological process that cannot be efficiently
modeled as a simple graph is the metabolic process (which
requires a few related biological entities) or protein com-
plexes (which encompass more than two proteins at a time)
[4], [5]. Multigraphs, which are graphs that allow multiple
links between two nodes, cannot be efficiently captured by a
simple graph. We believe that many problems can and should
be modeled as hypergraphs for at least the following reasons:
(1) hypergraphs are essentially multisets that can encom-
pass more information about complex interactions between
entities than simple graphs; (2) hypergraphs can effectively
capture auxiliary data – such as features and labels – related



to nodes in a single hyperedge, which results in a more
compact representation of information. For example, protein
networks could be modeled as hypergraphs in order to better
capture and store information about protein complexes [5].
This approach raises two questions. First, how do we model
such problems using a hypergraph? Second, what techniques
can we employ to compress the resulting hypergraph?

In this paper, we present a method to model and compress
such networks that consists of two phases. In the first
phase, we establish several mappings to transform problems
modeled as graphs into hypergraphs. Auxiliary information
such as labels or semantic features on nodes and edges, as
well as other data can be efficiently captured and modeled
in the hypergraph. In the second phase, we partition the
hypergraph into a number of parts in such a way that:
(1) each part entails structurally-similar vertices (e.g. based
on centrality scores of degree or betweenness as motivated
by [2]); and (2) the number of cut (or external) hyperedges
spanning two or more parts is minimized. The resulting
partitioned hypergraph is then processed in order to yield
more structural redundancy to increase compression. The
contributions of this paper are listed below:
• Paradigm shift in modeling. We provide ways to

model problems as directed or undirected hypergraphs
as well as mappings to transform simple graphs with
semantic features into hypergraphs. Moreover, we
serendipitously observed that semantic graphs were
significantly reduced in size when modeled as hyper-
graphs. This is due to the fact that a hyperedge may
encompass several vertices, which reduces the number
of rows in the incident matrix.

• Hypergraph compression. We compress hypergraphs
by grouping vertices in each part based on centrality
measures such as degree or betweenness. We also define
a generalized theoretical cost function to evaluate the
proposed compression scheme. This function may be
applied to both directed and undirected hypergraphs.

• Experimental results. We perform a detailed exper-
imental analysis on real social network datasets. Our
evaluations show that modeling real-world problems
as hypergaphs can lead to significantly compressed
structures.

The rest of the paper is organized as follows. In Section II,
we describe the proposed method in detail. We start with a
motivating example, which leads to the general idea behind
the hypergraph modeling paradigm. Next, we describe the
hypergraph partitioning problem modified to fit our compres-
sion objectives. Results are discussed in Section III. Work
consulted in the context of the proposed method is reviewed
in Section IV. Future directions are posited in Section V.

II. PROPOSED METHOD

In this section, we propose a method to compress large
graphs by first modeling them as hypergraphs, and then

partitioning and compressing the hypergraphs. This method
serves both algorithmic compression (e.g. more efficient,
parallelizable graph operations) and structural compression
(e.g. less space required to store and curate graph data).

A. Definitions

A hypergraph, H = 〈V, E〉, is a set of sets, or a system
of subsets of a given set of objects [6]. Here, V denotes
the set of vertices of the hypergraph, and E ⊆ 2V denotes
the set of hyperedges. A hyperedge e ∈ E is merely a set
of vertices, i.e. e ⊆ V , such that |e| ≥ 2. If direction
of vertices in a hyperedge is important, the hyperedge is
referred to as a hyperarc and the hypergraph is a called a
directed hypergraph. An example of a directed hypergraph
is illustrated in Figure 1. In the special case when |e| = 2,
the hypergraph is reduced to a simple graph.

The incidence matrix of an undirected hypergraph H =
〈V, E〉 is the |E| × |V | binary matrix A = (aij), where | • |
denotes the set cardinality operator and

aij =

{
1 : vj ∈ ei
0 : otherwise

This binary matrix can be extended to the following ternary
matrix if H is a directed hypergraph:

aij =

 −1 : vj ∈ Tail(E)
1 : vj ∈ Head(E)
0 : otherwise

Here, Tail(E) denotes the set of “from” vertices, and
Head(E) denotes the set of “to” vertices. If there is only one
“from” vertex (i.e. |Tail(E)| = 1), the hyperarc is referred
to as a backward hyperarc, or B-arc. An F -arc, or forward
hyperarc, is the case when |Head(E)| = 1 [7].

B. A Motivating Example

We motivate the proposed method by transforming
the philosophers’ graph (data extracted from
http://dbpedia.org/) into an actionable hypergraph.
The data model is straightforward. There are two entities –
era and philosopher – with the following rules:

1) An era contains one or more philosophers.
2) A philosopher may belong to one or two eras.
3) A philosopher may influence zero or more philoso-

phers.
A simple way to model these rules into a graph is by

considering each instance of an era and philosopher as a
vertex and adding an edge between each pair of vertices in-
duced by the three rules above. For example, the pre-Socratic
era encompasses, among others, philosophers Democritus
and Parmenides. With a simple-graph approach, we would
model these data as pairs: 〈pre− Socratic,Democritus〉
and 〈pre− Socratic,Parmenides〉.

However, we believe this simple graph approach is naı̈ve
(for many real-world problems as well) and does not reflect



Figure 1. Modeling eras and philosophers as hyperedges and hyperarcs:
the most compact approach.

Figure 2. Modeling eras and philosophers as hyperedges and simple edges:
the hybrid model approach.

the three rules above. A natural approach would be to model
the relationships between vertices in terms of hyperedges.
Based on the first and second rules, we may model a
particular era and all the philosophers it encompasses as
a single hyperedge. The third rule induces us to model the
‘influences’ relationship as a hyperarc (directed hyperedge).
That is, a philosopher along with the set of philosophers
they influence are modeled as a hyperarc. The resulting
hypergraph is a hybrid model (directed and undirected hy-
pergraph), as shown in the example in Figure 1. This model,
however, yields a significantly reduced incidence matrix
compared to the simple graph approach. An intermediary
alternative would be to model the ‘influences’ relationship
as a simple (undirected) edge between any two philosophers
(see Figure 2). The corresponding adjacency or incidence
matrices are displayed in figures 3, 4, and 5, where the num-
ber of nodes is 1546, and the number of edges/hyperedges
varies according to the three mapping schemes discussed
here.

C. Hypergraph Modeling

The first component of the proposed method is graph
modeling via hypergraphs. Here, we provide the general
scheme to transform a simple graph with semantic structure
into a hypergraph. We focus on transforming undirected
graphs noting that the mapping for directed graphs can be
easily derived. An undirected graph G = 〈U,E, FU , FE〉
with semantic features (or, more generally, labels) FU
and FE on nodes U and edges E, respectively, can be
represented as a hypergraph H = 〈V, E〉 as follows. Let

Figure 3. Adjacency matrix of the simple graph approach: 1546 nodes ×
2602 edges.

Figure 4. Incidence matrix of the hybrid model approach: 1546 nodes ×
2191 hyperedges.

Figure 5. Incidence matrix of the most compact model approach: 1546
nodes × 475 hyperedges.

φ(u) ⊆ FU , u ∈ U , denote the set of features belonging to
vertex u, and φ({u, t}) ⊆ FE , {u, t} ∈ E denote the set of
features belonging to edge {u, t}. Then
• features in φ(u) can be viewed as vertices and, along

with u, form a hyperedge, e. That is, e = φ(u) ∪ {u}.
• features in φ({u, t}) can be viewed as vertices and,

along with vertices u and t, form a hyperedge e. That
is, e = φ({u, t}) ∪ {u} ∪ {t}.

According to this mapping, the set of vertices V of the
hypergraph is given by V = {U ∪ FU ∪ FE}, and E ∈ 2V .
Note that if FU = FE = ∅, as in the case of the



philosophers’ graph, a hyperedge would be a set composed
of only vertices such that if two corresponding entries aij
and aik in the incidence matrix are equal to 1, vertices vj
and vk are connected by an edge in G.

As an example, consider two related users, v1 and v2, in
any complex social network. Each of these users has a set of
corresponding features such as date of birth, sex, geographi-
cal locale, movies they like, etc. The relationship between v1
and v2 may be more complex than simply ‘friends’, in the
sense that it may contain more features that describe it. For
instance, v1 and v2 may be in a relationship, are members
of the same family, or schoolmates, etc. Modeled as a
simple graph, we would have users v1 and v2 and an edge
connecting the two. Modeled as a hypergraph, however, the
semantic features would be captured in a lossless way and
would be modeled as a hyperedge (or hyperarc, if direction
matters). In general, if there are K types of semantic features
in the simple graph, then there are K + 1 different types
of vertices in the corresponding hypergraph. A compression
scheme would take log2(K + 1) bits to encode the type of
vertex. For the three types of vertices mentioned above, V ,
FU , and FE , we would require log2 3 bits to encode each.

D. Hypergraph Partitioning

The second component of the proposed method is the par-
titioning of the hypergraph into compression-friendly clus-
ters1 of vertices subject to certain constraints as discussed
below. Formally, a k-way hypergraph partitioning consists of
k vertex sets, P k = {V1, V2, . . . , Vk}, Vi ∈ V also known as
clusters or parts. A weighting function w : V → R may be
used for each vertex and may be aggregated for each cluster
of vertices: w(Vi) =

∑
v∈Vi

w(v). The set of hyperedges
cut by a partitioning solution, P k, is given by:

E(P k) = {e ∈ E|∃u, v ∈ e, v ∈ Vi, u ∈ Vj , i 6= j}.

The overall objective of hypergraph partitioning is to mini-
mize |E(P k)|.

The primary purpose of the proposed method is to trans-
form the hypergraph into a compression-friendly structure.
This can be achieved by permuting the vertices and hyper-
edges of the hypergraph in a way that increases redundancy
– and thus the degree of compressibility – within non-
overlapping regions of the incidence matrix. The procedure
we have devised to attain a compression-friendly incidence
matrix is as follows. First, compute a k-way vertex parti-
tioning such that vertices with high centrality scores (e.g.
degree or betweenness) form their own communities within
the first few parts, thus potentially yielding to a small
cardinality of the set of cut hyperedges. More formally, let
w(Vi) =

∑
v∈Vi

w(v) denote an aggregate centrality score

1Note: Technically, clustering is different from partitioning in that the
former is about merging vertices into a larger group of vertices, whereas
the latter is about dividing vertices and grouping them under a set based
on similarity or other criteria [8].

for part Vi, i = 1, 2, . . . , k. The constraint we impose on the
solution is yielding k communities with a decreasing order
of aggregate centrality:

w(V1) ≥ w(V2) ≥ . . . ≥ w(Vk).

If we were to view such a solution in terms of the incidence
matrix, each part Vi would correspond to a collection of
columns (which represent vertices) of the matrix. Then, part
V1 would contain vertices with higher centrality scores than
part V2, i.e. the first region in the matrix would contain more
1-valued entries than the second region, and so forth until the
k-th region, which would contain mostly 0-valued entries.
In principle, this ordering of vertices would yield a more
compression-friendly matrix.

In addition to ordering vertices per the aforementioned
weight constraints, the objective is to minimize the number
of cut hyperedges. That is,

Min.F (P k) =
∑
i

(λ(e ∈ E(Vi))− 1)w(e ∈ E(Vi)),

where E(Vi) ∈ E(P k) denotes the set of hyperedges cut by
part Vi, λ denotes the number of parts hyperedge e spans
less 1 (i.e. if the hyperedge doesn’t span any parts, λ −
1 = 0), and w(e ∈ E(Vi)) is the weight of hyperedge e.
The weight of a hyperedge may be defined depending on
the specific situation the hypergraph models. In the case
of social networks, for instance, the weight of a hyperedge
could be set to the sum of a centrality score of each vertex
the hyperedge contains.

Next, once a solution P k is yielded, we order the hy-
peredges such that uncut hyperedges are adjacent to each
other. This increases redundancy in the resulting incidence
matrix thus leading to potentially higher compression, es-
pecially when block-wise encoding (discussed in the next
sub-section) is used. Technically, the 1-valued entries of the
incidence matrix become adjacent to each-other (and so do
the 0-valued entries).

There are several reasons we take the aforementioned
partitioning approach. First, real-world graph data reveal
a power-law distribution of vertices [2]. That is, there
are very few nodes with very high centrality scores in a
given graph. This is why we impose a constraint such as
w(V1) ≥ w(V2) ≥ . . . ≥ w(Vk). Second, this type of
partitioning is highly parallelizable and scalable [9]. Third,
clustering vertices with high centrality scores may reduce the
querying time for selected query types, such as path finding.
Thus, vertices in part V1 (ordered in a decreasing way per
part weight) have a much lower entropy than vertices in part
Vk.

It is worthwhile mentioning that classic partitioning of
simple graphs has been criticized due to its hardness and “no
good cuts”, primarily due to the fact that such partitioning
doesn’t take into account the power-law vertex distribution
of real-world graphs [2]. However, hypergraph partitioning



in the sense of the proposed method is not handicapped
by this empirical observation. Instead, it considers this
observation as an essential constraint in the problem for-
mulation, as stated above. Finally, empirical research on
real-world graphs such as social networks or ground-truth
communities reveals that vertices tend to exhibit links to
densely organized communities [10].

Next, we look at a definition of compression ratio and
a compression measure we use in our experiments. From
the observations above, we may surmise that compressing
the final incidence matrix in a block-wise fashion is more
efficient than compressing the matrix all at once because
the matrix as a whole would introduce more sparsity and,
therefore, less redundancy than smaller non-overlapping
blocks. The cost measure we use here is a variation of
the cost function used in [2] and assumes an information-
theoretic lower bound. We generalize this cost function to
apply to ternary (and higher-order) matrices as well. Let A
denote the incidence matrix and a× b the dimensions of the
block, 1 < a < |E|, 1 < b < |V | . Then, we have

costb(A, a, b) = |T | · log2
(
|E||V |
ab

)
+
∑
τ∈T

ab ·Hb

(
z(τ)

ab

)
,

where, T is the set of non-empty blocks of size a×b, z(τ) is
the number of zeros in block τ , and Hb(x) = −x log2(x)−
(1−x) log2(1−x) is the binary entropy function. The term
|E||V |
ab counts the total number of a × b blocks. Thus, its

logarithm gives the number of bits required to encode each
block in the incidence matrix. The second term provides the
information-theoretic lower bound to encode the bits in given
block τ . That is, we require on average I0 = −log2 z(τ)ab bits
to encode a 0 and I1 = −log2

(
1− z(τ)

ab

)
bits to encode a 1.

Thus, the cost to encode block τ is z(τ)I0+(ab−z(τ))I1 =

ab z(τ)ab I0+ab
ab−z(τ)
ab I1 = abHb(

z(τ)
ab ). The generalized cost

function is given by:

cost(A, a, b) = |T | · log2
(
|E||V |
ab

)
+
∑
τ∈T

ab ·H (p) ,

where p denotes the probability distribution of (−1, 0, 1)
and H(p) = −

∑
x∈p x log2(x) is the information entropy

function. When evaluating both cost functions, we will use
square blocks (i.e., a = b) for processing simplicity.

E. Overview of the Algorithm

The steps discussed above can be summarized in Al-
gorithm 1. Hypergraph modeling merges vertex and edge
features with the vertex set U to yield V . The worst-
case complexity of this step is when |FU | ≥ |V |, thus
Convert(G) ∈ O(max {|FU |, |V |}2). In practice, however,
this is not the case. Also, various data structures may
provide better empirical complexity – we leave the actual
representation for future research. The complexity of hMeTis
is to be empirically evaluated due to the way that framework

is designed, i.e. computational efficiency depends on which
partitioning and coarsening scheme is chosen and which
parameters are selected for each scheme. Permuting the
hyperedges is achieved by going through all |E| hyperedges
and determining if each hyperedge is internal or external.
A list for the reordering of hyperedges is preserved and,
at every step, internal hyperedges are consecutively linked.
The computational complexity of this step is bound by
O
(
|E||P k|

)
. This step is observed to be empirically fast,

at least for the real-world hypergraphs we experimented
with. Overall, efficiency is presently bound by the modeling
step. Further adjustments in the selected data structures may
be needed for both time and space complexity. The latter
complexity will be determined thereafter.

Algorithm 1 Hypergraph Compression
Input: Graph G = 〈U,E, FU , FE〉
Output: Incidence matrix A and cost(A, a, b)
1. Hypergraph Modeling (Section II-C):
function CONVERT(G)

V = U ∪ FU ∪ FE
E = ∅, e = ∅
for v ∈ V do

e = {v}
for f ∈ FU do

if f ∈ φ(v) then
e = e ∪ {f}

end if
end for
E = E ∪ e, e = ∅

end for
return H = 〈V, E〉

end function
2. Hypergraph Partitioning (Section II-D): Partition H
using hMeTis [11] given the constraint and objective
function
3. Permute hyperedges in A such that all internal hyper-
edges are adjacent to each-other. The external hyperedges
are permuted in a increasing order based on λe. That is,
the hyperedge with that spans the least number of parts
follows the internal hyperedge last permuted, and so forth.

III. EXPERIMENTAL RESULTS

In this section, we provide empirical results guided by the
following research questions:
• How well can we compress hypergraphs per the proce-

dure in Section II-E? What are some results pertaining
to the empirical efficiency of the proposed method us-
ing various parameters, such as block size, and partition
variables?

• How does the proposed method per the algorithm
in Section II-E perform relative to methods such as
random and natural ordering?



To study these questions, we leverage insights from ex-
periments on the following available data set, noting that
obtaining data pertaining to graphs with semantic features
in the format required for the proposed algorithm has been a
difficult task, with few data, such as Twitter, being removed
due to privacy issues. We then provide a discussion for
each research question and ask more questions for future
experimental results and improvements of the proposed
method. The dataset used here along with the source code
developed to evaluate the compression cost as in Algorithm
1 are located at http://goo.gl/hmXodC.

Table I shows some properties of the selected data sets
for the experiments.2 The vertex set includes all vertices
and features, where applicable. The Philosophers data set
has been described above. The Orkut Communities data
set includes the top 5000 communities, i.e. groups of ver-
tices with highest quality [10]. Each community is viewed
here as a hyperedge. The General Relativity authorship
collaborations represent undirected relationships between
any two authors. In this case, each pair is viewed as a
hyperedge in the simple case. Note that this representation
can be extended to form hyperedges based on an ego-
vertex, i.e. an author with many collaboration links. We
leave this for further investigation.The AS Oregon-1 shows
the AS routing views from Oregon between March 31 and
May 26, 2001. Here, each hyperedge consists of a pair of
routing points. Next, the Amazon Co-Purchases shows the
network of products following Amazons Customers Who
Bought This Item Also Bought. . . functionality. Finally, the
CAIDA AS Relationship dataset is a directed hypergraph
with four additional types of vertices (features on edges
in the simple graph): is a customer of, is a provider of,
is peers with, and is siblings with. Compression results for
these graphs are shown in Table II, which contains the total
number of bits required to theoretically encode the given
hypergraph, and Table III, which contains bits per hyperedge
required to encode a hyperedge of the given graph using the
theoretical cost function described above for various block
sizes and parts from the partitioning step. Each hypergraph
compression result is compared versus a random ordering of
vertices as well as permuted vs. non-permuted hyperedges
(step 3 of the proposed algorithm).

As can be seen from Table III, the proposed algorithm
compresses hypergraphs with vertices and hyperedges laid
out as described hitherto with a relatively high theoretical
lossless compression ratio. We applied the proposed method
on both directed and undirected hypergraphs. Direction in
AS-CAIDA, for instance, is defined by the four relationship
features, which were considered vertices of the hypergraph
and included in the evaluation of the compression cost. On
all datasets, we used random ordering of vertices, which

2All data sets but the Philosophers’ graph were taken from
http://snap.stanford.edu/data/.

Data set |V | |E| Directed?
Philosophers 1546 2602 Yes
Orkut Communities 731514 5000 No
Relativity Co-Authors 5242 28980 No
AS Oregon-1 11174 23410 No
Amazon Co-Purchases 334863 925872 No
CAIDA AS Relationships Dataset 26479 106762 Yes

Table I
TEST DATA FOR OUR EXPERIMENTS

Data set Random Non-permuted Permuted
Philosophers 85.7708 24.9004 20.4405
Orkut 3857.2918 973.6721 973.5965
Co-Authors 15.6038 12.2423 12.2423
AS Oregon-1 26.3607 17.8530 17.8530
Amazon 44402.1379 17.4805 17.4805
AS-CAIDA 17.8889 12.53069 12.53069

Table III
BITS PER HYPEREDGE REQUIRED TO THEORETICALLY ENCODE EACH

HYPEREDGE: RANDOM ORDERING, NON-PERMUTED HYPEREDGES,
PERMUTED HYPEREDGES. THIS METRIC PUTS ALL HYPERGRAPHS IN A

COMPARISON-INDUCING PERSPECTIVE. THE RATIOS IN THE LAST
COLUMN ARE THE MOST EFFICIENT COMPRESSION RATIOS IN BITS PER

HYPEREDGE.

requires the largest number of bits per hyperedge, as well
as non-permuted and permuted hyperedges. Note that for
the latter two there is little or no significant improvement in
compression ratios. This is probably due to the fact that
for the hypergraphs with small hyperedge cardinality (2
or 3, in the selected dataset, except for Orkut), external
hyperedges are in minority. Therefore, permuting these hy-
peredges would make no perceivable difference in terms of
compression. However, permuting hyperedges made a slight
difference in the case of Orkut, where hyperedges comprised
a large number of vertices (the first community consisted
of over 6000 members, for example). As such, external
hyperedges vary in number, and reordering these could lead
to better compression for similar hypergraphs. This is also
the reason why results for Orkut stand out contrasted to
other hypergraphs. In the Orkut incidence matrix, there is
less redundancy, given the very small number of hyperedges
(5000) and the high number of non-zero bits dispersed
throughout the matrix. If we were to consider the one-to-
one Orkut relationships (i.e. having hyperedge cardinalities
of 2 or 3), the compression ratio would probably decrease
to a two-digit value, as in the case of other hypergraphs.
Furthermore, the effect of a large number of vertices can
be seen in the case of a random-ordered Amazon incidence
matrix, where the ratio is 44,402 bits (5.42 KB) per hy-
peredge. Laying out vertices randomly in such an incidence
matrix will increase the number of external hyperedges upon
partition. As such, redundancy in that matrix will decrease,
leading to lower compression. Yet, when vertices are ordered
naturally and hyperedges permuted, the compression ratio is
decreased to about 17 bits per hyperedge. This implies that



Data set Random Non-permuted Permuted Parts a× b
Philosophers 40741.13 11827.69 9709.24 30 16× 16
Orkut 19286459.21 4868360.71 4867982.32 150 16× 16
Co-Authors 452197.68 354782.47 354782.47 30 16× 16
AS Oregon-1 620848.03 420473.68 420473.68 40 256× 256
Amazon 41110696218.68 16184615.36 16184615.36 300 256× 256
AS-CAIDA 1909837.02 1337795.74 1337795.74 40 16× 16

Table II
TOTAL NUMBER OF BITS REQUIRED TO THEORETICALLY ENCODE EACH HYPERGRAPH: RANDOM ORDERING, NON-PERMUTED HYPEREDGES,

PERMUTED HYPEREDGES.

vertex ordering has its own effects on compression. In our
experiments, we did not focus on permuting vertices and we
leave this for future research.

In terms of empirical efficiency, the partitioning step for
Amazon, for example, took 167.65 seconds to complete.
Hypergraph partitioning with hMeTis – the tool used here –
is reportedly the fastest algorithm. However, there are paral-
lel partitioning methods, such as the disk-based hypergraph
partitioning proposed in [9], which significantly improve
performance. We leave parallelization of both partition and
compression for future research. Furthermore, it must be
noted that parameters, such as block dimensions and number
of parts, were empirically chosen based on the number of
vertices and hyperedges for each graph. More results are
needed to determine the effects of various parameters on
lossless compression.

To answer the question on how well the proposed method
can perform relative to other schemes, we need to compare
existing hypergraph-based compression results with the pro-
posed method. To our knowledge, no such results have been
published to date. However, if our results are juxtaposed with
those in [2], we may conjecture that the proposed method
yields very high compression ratios.

IV. RELATED WORK

Most related research has focused on compressing struc-
tured graphs for both algorithmic and structural compres-
sion. In other words, semantic features and other labels
– the unstructured data which are conspicuous in social
networks – are excluded from any compression. Vertices
are laid out or clustered in a particular way that is more
compression-friendly, although optimal orderings have been
shown to be NP-hard [12]. A seminal work on structured
compression is the Webgraph Framework [3], where vertices
represent URLs of web pages. Sorting vertices by URL –
also referred to as lexicographic ordering – was observed
to group similar web pages together, thus increasing data
redundancy for better compression of the graph structure
of the web. In graphs where edges represent relationships,
such as the “influences” relationship in the philosophers’
graph (Section II-B), ordering nodes lexicographically may
not be as efficient as the shingle ordering proposed in [12].
Shingle ordering is an instance of natural ordering of vertices

by obtaining a vertex neighborhood schema and ordering all
other vertices based on this schema. For instance, if a neigh-
borhood schema is built for “influences” and “is student of”
relationships in the philosophers’ graph, all vertices will be
ordered conforming to a similarity coefficient per the chosen
schema. Grammar-based ordering has also been suggested as
a fast compression method [13].

Besides rearranging vertices, clustering them in closely-
related communities has been extensively studied. METIS
algorithms for k-way multilevel graph partitioning have been
extensively studied [11], [14] with recent advances in paral-
lelizing the partitioning steps [15]. Other clustering methods
include cross-association [16], spectral clustering [17], or
folksonomies [18], which detect structural patterns in order
to reduce the number of edges when relating communities
of vertices to one-another.

Other types of graph compression techniques are con-
textualized by the purpose of compression, such as query-
preserving or neighbor-query-friendly methods [19], [20],
geographic clustering for network graphs [1], and methods
based on centrality scores, such as SlashBurn [2].

Hypergraph modeling techniques have been developed to
study problems arising primarily in VLSI and circuitry [21],
as well as protein complexes [5]. Hypergraph partitioning
has been an active area of research [11] with a variety of
modern techniques [8]. However, we identified a dearth of
literature in (i) integrating semantically-rich data (features,
labels, relationships, etc.) with the structural layout of the
vertices, and (ii) modeling such data along with the corre-
sponding graphs as hypergraphs for the purpose of devising
efficient compression schemes. The method proposed in this
paper addresses these two points while naturally committing
to a trade-off between empirical efficiency (a characteristic
of structural graph compression) and quality (a characteristic
of hypergraph modeling and partitioning techniques).

V. CONCLUSIONS AND FUTURE DIRECTIONS

We have proposed a method to model real-world graphs
with simple-to-advanced semantic structures via specially-
constructed hypergraphs. First, we model such graphs as
hypergraphs by considering node and edge labels as vertices
that can be combined in hyperedges (or hyperarcs in the case
of directed hypergraphs). Second, we partition the resulting



hypergraph in ways that increase structural redundancy –
which can, in turn, be exploited by a compression scheme.
To gain insights on the theoretically achievable compression
ratio, we used block-wise encoding via binary entropy.

The experimental results reveal that modeling even simple
graphs as hypergraphs can yield sufficiently good com-
pression ratios. The strength of the proposed hypergraph
modeling should also be determined in the context of real
complex network (such as those in Biology). This is one
of the next steps of this research, including studying the
properties of the resulting hypergraphs in order to determine
what type of queries can be efficiently executed and what
type of query-friendly compression methods we could de-
vise. Particular properties we are interested in include: vertex
degree distribution, which also determines the structural
heterogeneity of the hypergraph in an information-theoretic
sense [22], [23]; path length, which determines whether a
hypergraph has a small-world structure; and the maximum
k-core, which determines which nodes are the most crucial
or critical in the hypergraph (c.f. [4]).
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