
Combinatorics of minimal absent words
for a sliding window

Tooru Akagi1, Yuki Kuhara1, Takuya Mieno1,2, Yuto Nakashima1,
Shunsuke Inenaga1,3, Hideo Bannai4, and Masayuki Takeda1

1Department of Informatics, Kyushu University, Japan
{toru.akagi@inf.kyushu-u.ac.jp, takuya.mieno@inf.kyushu-u.ac.jp,

yuto.nakashima, inenaga, takeda}@inf.kyushu-u.ac.jp
2Japan Society for the Promotion of Science, Japan

3PRESTO, Japan Science and Technology Agency, Japan
4M&D Data Science Center, Tokyo Medical and Dental University, Japan

hdbn.dsc@tmd.ac.jp

Abstract
A string w is called a minimal absent word (MAW) for another string T if w does

not occur in T but the proper substrings of w occur in T . For example, let Σ = {a, b, c}
be the alphabet. Then, the set of MAWs for string w = abaab is {aaa, aaba, bab, bb, c}.
In this paper, we study combinatorial properties of MAWs in the sliding window model,
namely, how the set of MAWs changes when a sliding window of fixed length d is shifted
over the input string T of length n, where 1 ≤ d < n. We present tight upper and
lower bounds on the maximum number of changes in the set of MAWs for a sliding
window over T , both in the cases of general alphabets and binary alphabets. Our
bounds improve on the previously known best bounds [Crochemore et al., 2020].

1 Introduction

We say that a string u occurs in another string T if s is a substring of T . A non-empty
string w is said to be a minimal absent word (an MAW) for a string T if w does not occur
in T but any proper substring of w occurs in T . Note that by definition a string of length 1
(namely a character) which does not occur in T is also an MAW for T . On the other hand,
any MAW for T of length at least 2 can be represented as aub, where a and b are single
characters and u is a (possibly empty) string, such that both au and ub occur in T . For
example, let Σ = {a, b, c} be the alphabet. Then, the set of MAWs for string w = abaab is
{aaa, aaba, bab, bb, c}.

Applications of (minimal) absent words include phylogeny [6], data compression [11],
musical information retrieval [8], and bioinformatics [1, 7].

1.1 Algorithms for finding MAWs for string

Given the afore-mentioned motivations, finding MAWs from a given string has been an
important and interesting string algorithmic problem and several nice solutions have been

1

ar
X

iv
:2

10
5.

08
49

6v
1

 [
m

at
h.

C
O

]
 1

8
M

ay
 2

02
1

proposed. The first non-trivial algorithm, which was given by Crochemore et al. [10], finds
the set MAW(T) of all MAWs for a given string T of length n over an alphabet of size σ in
Θ(σn) time with O(n) working space. Since |MAW(T)| = O(σn) for any string T of length n
and |MAW(S)| = Ω(σn) for some string S of length n [10], Crochemore et al.’s algorithm [10]
runs in optimal time in the worst case. Fujishige et al. [13] improved Crochemore et al.’s
algorithm so that MAW(T) can be computed in output-sensitive O(n + |MAW(T)|) time
with O(n) working space. Both of these algorithms use the directed acyclic word graph
(DAWG) [5] of string T as a powerful tool for enumerating all MAWs for T . Belazzougui et
al. [4] showed that MAW(T) can also be computed in O(n+ |MAW(T)|) time, provided that
the bidirectional Burrows-Wheeler transform of a given string has already been computed.
Barton et al. [2] proposed a practical algorithm to compute MAW(T) in Θ(nσ) time and
working space1 based on the suffix array [14] of T . A parallel algorithm for computing
MAWs has also been proposed [3]. Fici and Gawrychowski [12] extended the notion of
MAWs to rooted/unrooted labeled trees and presented efficient algorithms to compute them.

1.2 MAWs for sliding window

This paper follows the recent line of research on MAWs for the sliding window model, which
was initiated by Crochemore et al. [9]. In this model, the goal is to compute or analyze
MAW(T [i..i + d − 1]) for every window T [i..i + d − 1] of fixed length d ≥ 1 that shifts T
from left to right with increasing i = 1, . . . , n− d+ 1. For instance, consider

Crochemore et al. [9] presented a suffix-tree based algorithm that maintains the set of
all MAWs for a sliding window in O(σn) time using O(σd) working space. Crochemore et
al. [9] also showed how their algorithm can be applied to approximate pattern matching
under the length weighted index (LWI) metric [6].

The (in)efficiency of their algorithms is heavily dependent on combinatorial properties
of MAWs for the sliding window. In particular, Crochemore et al. [9] studied the number of
MAWs to be added/deleted when the current window is shifted to the right by one character.
As was done in [9], for ease of discussion let us separately consider

• adding a new character T [i+ d] to the current window T [i..i+ d− 1] of length d which
forms T [i..i+ d], and

• deleting the left-most character T [i− 1] from the current window T [i− 1..i+ d− 1]
which forms T [i..i+ d− 1] of length d.

We remark that these two operations are symmetric.
Crochemore et al. [9] considered how many MAWs can change before and after the

window has been shifted by one position, and showed that

|MAW(T [i..i+ d])4MAW(T [i..i+ d− 1])| ≤ (si − sα)(σ − 1) + σ + 1,

|MAW(T [i− 1..i+ d− 1])4MAW(T [i..i+ d− 1])| ≤ (pi − pβ)(σ − 1) + σ + 1,

where 4 denotes the symmetric difference and

• si is the length of the longest repeating suffix of T [i..i+ d− 1],
1The original claimed bound in [2] is O(n), however, the authors assumed that σ = O(1).

2

• sα is that of the longest suffix of T [i..i+d−1] having an internal occurrence immediately
followed by α = T [i+ d],

• pi is that of the longest repeating prefix of T [i..i+ d− 1], and

• pβ is that of the longest prefix of T [i..i+d−1] having an internal occurrence immediately
preceded by β = T [i− 1].

Since both si− sα and pi−pβ can be at most d−1 in the worst case, the asymptotic bounds
for the numbers of changes in the set of MAWs obtained by Crochemore et al. [9] are:

|MAW(T [i..i+ d])4MAW(T [i..i+ d− 1])| ∈ O(σd),
|MAW(T [i− 1..i+ d− 1])4MAW(T [i..i+ d− 1])| ∈ O(σd).

(1)

Crochemore et al. [9] also considered the total changes in the set of MAWs for every
sliding window over the string T , and showed that

n−d∑
i=1

(
|MAW(T [i..i+ d− 1])4MAW(T [i+ 1..i+ d])|

)
∈ O(σn). (2)

1.3 Our contribution

The goal of this paper is to give more rigorous analyses on the number of MAWs for the
sliding window model. This study is well motivated since revealing more combinatorial
insights to the sets of MAWs for the sliding windows can lead to more efficient algorithms
for computing them.

In this paper, we first give the following upper bounds:

|MAW(T [i..i+ d])4MAW(T [i..i+ d− 1])| ≤ d+ σ′ + 1,
|MAW(T [i− 1..i+ d− 1])4MAW(T [i..i+ d− 1])| ≤ d+ σ′ + 1,

(3)

where σ′ is the number of distinct characters in T [i..i+ d− 1]. We then show that our new
upper bounds in (3) are tight by showing a family of strings achieving these bounds.

Since σ′ ≤ d always holds, we immediately obtain new asymptotic upper bounds

|MAW(T [i..i+ d])4MAW(T [i..i+ d− 1])| ∈ O(d),
|MAW(T [i− 1..i+ d− 1])4MAW(T [i..i+ d− 1])| ∈ O(d).

(4)

Our new upper bounds in (4) improve Crochemore et al.’s upper bounds in (1) for any
alphabet of size σ ∈ ω(1). Our upper bounds in (4) are also tight as there exists a family of
strings achieving the matching lower bounds Ω(d).

In this paper, we also present a new upper bound for the total changes of MAWs:

n−d∑
i=1

(
|MAW(T [i..i+ d− 1])4MAW(T [i+ 1..i+ d])|

)
∈ O(min{σ, d}n) (5)

which improves the previous bound O(σn) in (2). We then show that this new upper bound
in (5) is also tight.

3

All of our new bounds afore-mentioned are tight for any alphabet of size σ′ ≥ 3. We
further explore the case of binary alphabets with σ′ = 2, and show that there exist even
tighter bounds in the binary case. Namely, for σ′ = 2, we prove that

|MAW(T [i..i+ d])4MAW(T [i..i+ d− 1])| ≤ max{3, d},
|MAW(T [i− 1..i+ d− 1])4MAW(T [i..i+ d− 1])| ≤ max{3, d}. (6)

We remark that plugging σ′ = 2 into (3) for the general case only gives d+ σ′ + 1 = d+ 3,
which is larger than max{3, d} in (6). We also show that the upper bounds max{3, d} in (6)
are tight by giving the matching lower bounds with a family of binary strings.

A part of the results reported in this article appeared in a preliminary version of this
paper [15].

2 Preliminaries

2.1 Strings

Let Σ be an alphabet. An element of Σ is called a character. An element of Σ∗ is called a
string. The length of a string T is denoted by |T |. The empty string ε is the string of length
0. If T = xyz, then x, y, and z are called a prefix, substring, and suffix of T , respectively.
They are called a proper prefix, proper substring, and proper suffix of T if x 6= T , y 6= T ,
and z 6= T , respectively.

For any 1 ≤ i ≤ |T |, the i-th character of T is denoted by T [i]. For any 1 ≤ i ≤ j ≤ |T |,
T [i..j] denotes the substring of T starting at i and ending at j. For convenience, T [i′..j′] = ε
for i′ > j′. For any 1 ≤ i ≤ |T |, let T [..i] = T [1..i] and T [i..] = T [i..|T |].

We say that a string w occurs in a string T if w is a substring of T . Note that by
definition the empty string ε is a substring of any string T and hence ε always occurs in T .

2.2 Minimal absent words (MAWs)

A string w is called an absent word for a string T if w does not occur in S. An absent word
w for S is called a minimal absent word or MAW for S if any proper substring of w occurs
in S. We denote by MAW(S) the set of all MAWs for S. By the definition of MAWs, it is
clear that w ∈ MAW(S) iff the three following conditions hold:

(A) w does not occur in S;

(B) w[2..] occurs in S;

(C) w[..|w| − 1] occurs in S.

We note that if w is a string of length 1 which does not occur in S (i.e. w is a single
character in Σ not occurring in S), then w is a MAW for T since w[2..] = w[..|w| − 1] = ε is
a substring of S.

4

2.3 MAWs for a sliding window

Given a string T of length n and a sliding window Si = T [i..j] of length d = j − i+ 1 for
increasing i = 1, . . . , n − d + 1, our goal is to analyze how many MAWs for the sliding
window can change when the window shifts over the string T . We will consider both the
maximum change per one shift, and the maximum change for all the shifts over the input
string.

As was done in [9], for simplicity, we separately consider two symmetric operations of
appending a new character to the right of the window and of deleting the leftmost character
from the window.

Example 1. Consider to append character c to the right of string cbaaaa. Then,

MAW(cbaaaa) = {cc, bb, aaaaa, bc, ab, ca, ac},
MAW(cbaaaac) = {cc, bb, aaaaa, bc, ab, ca, acb, bac, baac, baaac}.

Thus MAW(cbaaaa)4MAW(cbaaaac) = {ac, acb, bac, baac, baaac}, where the underlined
string is deleted from and the strings without underlines are added to the set of MAWs by
appending c to cbaaaa.

3 Tight bounds on the changes to MAWs for sliding window

In this section, we present our new bounds for the changes of MAWs for the sliding window
over the string T . In Section 3.1, we consider the number of changes of MAWs when the
current window T [i..j] is extended by adding a new character T [j + 1]. Section 3.2 is for the
symmetric case where the leftmost character T [i] is deleted from T [i..i+ j + 1]. Finally, in
Section 3.3, we consider the total number of changes of MAWs while the window has been
shifted from the beginning of T until its end.

3.1 Changes to MAWs when appending character to right

We consider the number of changes of MAWs when appending T [j+1] to the current window
T [i..j].

For the number of deleted MAWs, the next lemma is known:

Lemma 1 ([9]). For any 1 ≤ i ≤ j < n, |MAW(T [i..j]) \MAW(T [i..j + 1])| = 1.

Next, we consider the number of added MAWs. We classify each MAW w in MAW(T [i..j+
1]) \MAW(T [i..j]) to the following three types2 (see Figure 1). A MAW w in MAW(T [i..j +
1]) \MAW(T [i..j]) is said to be of:

Type 1 if neither w[2..] nor w[..|w| − 1] occurs in T [i..j];

Type 2 if w[2..] occurs in T [i..j] but w[..|w| − 1] does not occur in T [i..j];

Type 3 if w[2..] does not occur in T [i..j] but w[..|w| − 1] occurs in T [i..j].

We denote by M1, M2, and M3 the sets of MAWs of Type 1, Type 2 and Type 3,
respectively. Recall that w is a MAW for T [i..j + 1].

Let σ′ be the number of distinct characters occurring in the current window T [i..j].
2At least one of w[2..] and w[..|w| − 1] does not occur in T [i..j], since w 6∈ MAW(T [i..j]).

5

j j + 1
T

Type 1

i

 w1[2..]

MAW_3types.eps

 α

 w1[. . |w1 | − 1]

 w2[. . |w2 | − 1] w2[2..]Type 2

 w3[2..] w3[. . |w3 | − 1]Type 3

Figure 1: Illustration for the three types of MAWs, where w1 ∈ M1, w2 ∈ M2, and
w3 ∈M3.

Lemma 2 ([9]). For any 1 ≤ i ≤ j < n, |M1| ≤ 1. Also, if α is the character appended to
T [i..j], then the only element ofM1 is of form αk with some k ≥ 1.

Lemma 3. For any 1 ≤ i ≤ j < n, |M2| ≤ σ′.

Proof. It is shown in [9] that the last characters of all MAWs in M2 are all distinct.
Furthermore, by the definition ofM2, the last character T [j + 1] of each MAW inM2 must
occur in the current window T [i..j]. Thus, |M2| ≤ σ′.

The next lemma holds forM3:

Lemma 4. For any 1 ≤ i ≤ j < n, |M3| ≤ d− 1, where d = j − i+ 1.

Proof. We show that there is an injection f : M3 → [i, j − 1] which maps each MAW
w ∈ M3 to the ending position of the leftmost occurrence of w[..|w| − 1] in the current
window T [i..j].

First, we show that the range of this function f is [i, j − 1]. By definition, w is absent
from T [i..j+1] and w[|w|] = T [j+1] for each w ∈M3, and thus, no occurrence of w[..|w|−1]
in T [i..j] ends at position j. Hence, the range of f does not contain the position j, i.e. it is
[i, j − 1].

Next, for the sake of contradiction, we assume that f is not an injection, i.e. there are
two distinct MAWs w1, w2 ∈ M3 such that f(w1) = f(w2). W.l.o.g., assume |w1| ≥ |w2|.
Since w1[|w1|] = w2[|w2|] = T [j + 1] and f(w1) = f(w2), w2 is a suffix of w1. If |w1| = |w2|,
then w1 = w2 and it contradicts with w1 6= w2. If |w1| > |w2|, then w2 is a proper suffix
of w1, and it contradicts with the fact that w2 is absent from T [i..j + 1] (see Figure 2).
Therefore, f is an injection and |M3| ≤ j − 1− i+ 1 = d− 1.

Summing up all the upper bounds forM1,M2, andM3, we obtain the following:

Lemma 5. For any 1 ≤ i ≤ j < n, |MAW(T [i..j + 1]) \ MAW(T [i..j])| ≤ σ′ + d, where
d = j − i+ 1.

Proof. Immediately follows from Lemmas 2, 3, and 4 and that M1, M2, and M3 are
mutually disjoint.

6

j j + 1
T

�f(w1) = f(w2)i

type3.eps

 α

 x1 b1

 b2 x2

 x1 a1

 a2 x2

 β

Figure 2: Illustration for the contradiction in the proof of Lemma 5. Consider two strings
w1 = a1x1b1 and w2 = a2x2b2 that are MAWs for T of Type 3 where a1, a2, b1, b2 ∈ Σ and
x1, x2 ∈ Σ∗. If |w1| > |w2| and f(w1) = f(w2), then x2 is a proper suffix of x1, and it
contradicts that a2x2b2 is absent from T .

Now we obtain the main result of this subsection, which shows the matching upper and
lower bounds for |MAW(T [i..j + 1])4MAW(T [i..j])|.

Theorem 1. For any 1 ≤ i ≤ j < n, |MAW(T [i..j + 1])4 MAW(T [i..j])| ≤ σ′ + d + 1,
where d = j − i+ 1. The upper bound is tight when σ ≥ 3 and σ′ + 1 ≤ σ.

Proof. By Lemma 1 and Lemma 5, we have |MAW(T [i..j+1])4MAW(T [i..j])| = |MAW(T [i..j+
1]) \MAW(T [i..j])|+ |MAW(T [i..j]) \MAW(T [i..j + 1])| ≤ σ′ + d+ 1.

In the following, we show that the upper bound is tight, i.e. there is a string Z of length
d and a character α where |MAW(Z)4MAW(Zα)| = σ′ + d+ 1 for any two integers d and
σ′ with 1 ≤ σ′ ≤ d and σ′ + 1 ≤ σ. Let Σ = {a1, a2, · · · , aσ} be an alphabet. Given two
integers d and σ′ with 1 ≤ σ′ ≤ d and σ′+1 ≤ σ, consider a string Z = a1a2 · · · aσ′−1a

d−σ′+1
σ′

of length d and a character α = aσ′+1. Then,

MAW(Z) \MAW(Zα) = {α}.

Also,

MAW(Zα) \MAW(Z) = {α2} ∪ {αai | 1 ≤ i ≤ σ′} ∪ {aiα | 1 ≤ i ≤ σ′ − 1}
∪{aσ′−1a

e
σ′α | 1 ≤ e ≤ d− σ′}.

This leads to the matching lower bound |MAW(Z)4MAW(Zα)| = σ′ + d+ 1.

A concrete example for our lower-bound strings Z and Zα is shown below.

Example 2. Let Z = abcddd where d = |Z| = 6, σ′ = 4, and d − σ′ + 1 = 3. Also, let
α = e. Then,

MAW(abcddd) \MAW(abcddde) = {e}

and

MAW(abcddde) \MAW(abcddd)

= M1 ∪M2 ∪M3

= {ee} ∪ {ea, eb, ec, ed} ∪ {ae, be, ce, cde, cdde},

and therefore |MAW(Z)4MAW(Zα)| = σ′ + d+ 1 = 11.

7

3.2 Changes to MAWs when deleting leftmost character

Next, we analyze the number of changes of MAWs when deleting the leftmost character
from a string. By a symmetric argument to Theorem 1, we obtain:

Corollary 1. For any 1 < i ≤ j ≤ n, |MAW(T [i..j])4 MAW(T [i − 1..j])| ≤ σ′ + d + 1
where d = j − i+ 1 and σ′ is the number of distinct characters occurs in T [i..j]. Also, the
upper bound is tight when σ ≥ 3 and σ′ + 1 ≤ σ.

Proof. Symmetric to the proof of Lemma 1.

Finally, by combining Theorem 1 and Corollary 1, we obtain the next theorem:

Theorem 2. Let d be the window length. For any string T of length n > d and each position i
in T with 1 ≤ i ≤ n−d, |MAW(T [i..i+d−1])4MAW(T [i+1..i+d])| ∈ O(d). Also, there exists
a string T ′ with |T ′| ≥ d+1 which satisfies |MAW(T ′[j..j+d−1])4MAW(T ′[j+1..j+d])| ∈
Ω(d) for some j with 1 ≤ j ≤ |T ′| − d.

This theorem improves Crochemore et al.’s upper bound for |MAW(T [i..i+ d− 1])4
MAW(T [i+ 1..i+ d])| ∈ O(σd) for any alphabet of size σ ∈ ω(1).

3.3 Total changes of MAWs when sliding window on string

In this subsection, we consider the total number of changes of MAWs when sliding the
window of length d from the beginning of T to the end of T . We denote the total number of
changes of MAWs by S(T, d) =

∑n−d
i=1 |MAW(T [i..i+ d− 1])4MAW(T [i+ 1..i+ d])|. The

following lemma is known:

Lemma 6 ([9]). For a string T of length n > d over an alphabet Σ of size σ, S(T, d) ∈ O(σn).

The aim of this subsection is to give a more rigorous bound for S(T, d). We first show
that the above bound is tight under some conditions.

Lemma 7. The upper bound of Lemma 6 is tight when σ ≤ d and n− d ∈ Ω(n)

Proof. If σ = 2, the lower bound S(T ′, d) ∈ Ω(n− d) = Ω(σ(n− d)) is obtained by string
T ′ = (ab)n/2.

In the sequel, we consider the case where σ ≥ 3. Let k be the integer with (k−1)(σ−1) ≤
d < k(σ − 1). Note that k ≥ 2 since σ ≤ d. Let Σ = {a1, a2, · · · , aσ} and α = aσ. We
consider a string T ′ = U e + U [..m] where U = a1α

k−1a2α
k−1 . . . aσ−1α

k−1, e = b n
k(σ−1)c,

and m = n mod k(σ − 1). Let c be a character that is not equal to α. For any two distinct
occurrences i1, i2 ∈ occT ′(c) for c, |i1 − i2| ≥ k(σ − 1) > d. Thus, any character c 6= α is
absent from at least one of two adjacent windows T ′[i..i + d − 1] and T ′[i + 1..i + d] for
every 1 ≤ i ≤ n− d.

Now we consider a window W = T [p− d..p− 1] where d+ 1 ≤ p ≤ n and T [p] = β 6= α.
Let Π = {b1, b2, · · · , bπ, α} ⊂ Σ\{β} be a set of all characters that occur in W . W.l.o.g., we
assume that the current window is W = αrb1α

k−1b2α
k−1 · · · bπαk−1 and the next window

is W ′ = W [2..]β where r = d mod k (see Figure 3). For any character b ∈ Π \ {b1, bπ, α},
bα`β is in MAW(W ′) 4 MAW(W) for every 0 ≤ ` ≤ k − 1. If r > 0, b1α`β is also in
MAW(W ′)4MAW(W) for every 0 ≤ ` ≤ k − 1. Otherwise, b1 is in MAW(W ′)4MAW(W)

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

T = b a a a c a a a d a a a b a a a c

�W = T[4..12]

MAW_total.eps

Σ = {a, b, c, d}, d = 9

�W′ � = T[5..13]

MAW(W) = {aaaa, cc, cd, cad, caad, dd, dad, daad, daaad, dc,

 b, aac, cac, dac}

MAW(W´) = {aaaa, cc, cd, cad, caad, dd, dad, daad, daaad, dc,

 ac, ba, bb, bc, bd, cb, cab, caab, caaab, db, dab, daab}

Figure 3: Illustration of examples of MAWs for adjacent two windows. In this example,
σ = 4, d = 9, and k = 4. The size of the symmetric difference of MAW(W) and MAW(W ′)
is |MAW(W)4MAW(W ′)| = |{b, aac, cac, dac, ac, ba, bb, bc, bd, cb, cab, caab, caaab,
db, dab, daab}| = 16.

and b1α
`b2 is in MAW(W ′)4MAW(W) for every 0 ≤ ` ≤ k − 2 since b1 is absent from

W ′. Also, β is in MAW(W ′)4MAW(W) and bπα`β is in MAW(W ′)4MAW(W) for every
0 ≤ ` ≤ k−2. Thus, at least (π−2)k+k+1+(k−1) = πkMAWs are inMAW(W ′)4MAW(W).
Additionally, the number π of distinct characters which occur in W and are not equal to α is
at least b(σ−1)/2c, since kb(σ−1)/2c ≤ k(σ−1)/2 = (k−k/2)(σ−1) ≤ (k−1)(σ−1) ≤ d.
Therefore, |MAW(W ′)4MAW(W)| ≥ πk ≥ b(σ − 1)/2ck ∈ Ω(σk) = Ω(d). The number
of pairs of two adjacent windows W and W ′ where |MAW(W ′) 4 MAW(W)| ∈ Ω(d) is
Θ((n− d)/k). Therefore, we obtain S(T ′, d) ∈ Ω(d(n− d)/k) = Ω(σ(n− d)) = Ω(σn) since
n− d ∈ Ω(n).

Next, we consider the case where σ ≥ d+ 1.

Lemma 8. For a string T of length n > d over an alphabet Σ of size σ, S(T, d) ∈ O(d(n−d)),
and this upper bound is tight when σ ≥ d+ 1

Proof. By Corollary 2, it is clear that S(T, d) ∈ O(d(n− d)). Next, we show that there is a
string T ′ of length n > d such that S(T ′, d) ∈ Ω(d(n−d)) for any integer d with 1 ≤ d ≤ σ−1.
Let Σ = {a1, a2, · · · , aσ}. We consider a string T ′ = (a1a2 · · · ad+1)

ea1a2 · · · ak where
e = bn/(d + 1)c and k = n mod (d + 1). For each window W = T ′[i..i + d − 1] in T ′, W
consists of distinct d characters, and the character T ′[i+d] that is the right neighbor of W is
different from any of characters occur in W . W.l.o.g., we assume that the current window is
W = a1a2 · · · ad and the next window isW ′ = W [2..]ad+1. Then, |MAW(W ′)4MAW(W)| =
|{ad+1} ∪ {ad+1ai | 2 ≤ i ≤ d}| = d. Therefore, S(T ′, d) = d(n− d).

The main result of this section follows from the above lemmas:

Theorem 3. For a string T of length n > d over an alphabet Σ of size σ, S(T, d) ∈
O(min{d, σ}n). This upper bound is tight when n− d ∈ Ω(n).

9

We remark that n − d ∈ Ω(n) covers most interesting cases for the window length d,
since the value of d can range from O(1) to cn for any 0 < c < 1.

4 Tighter bounds for binary alphabets

In this section we consider the case where σ′ = 2, i.e. when both the current sliding window
S = T [i..i+ d − 1] and the next window Sα = T [i..i+ d] extended with a new character
α = T [i+ d] consist of two distinct characters. The goal of this section is to show that when
σ′ = 2, there exists a tighter upper bound for the number of changes of MAWs than the
general case with σ′ ≥ 3. In what follows, let us denote by Σ2 = {0, 1} the binary alphabet,
and assume w.l.o.g. that we append the new character α = 0 to the window S of length d
and obtain the extended window Sα = S0.

As a warm up, we begin with the two following lemmas which show that at most 3
MAWs can change in the cases where d = 1 and d = 2 for any binary strings.

Lemma 9. For any string S0 over Σ2 with |S| = d = 1, |MAW(S)4MAW(S0)| ≤ 3.

Proof. For each S ∈ {0, 1},

MAW(0)4MAW(00) = {00, 000},
MAW(1)4MAW(10) = {0, 00, 01},

where the underlined strings are those in MAW(S) \ MAW(S0) and the strings without
underlines are those in MAW(S0) \MAW(S). Thus the lemma holds.

Lemma 10. For any string S0 over Σ2 with |S| = d = 2, |MAW(S)4MAW(S0)| ≤ 3.

Proof. For each S ∈ {00, 01, 10, 11},

MAW(00)4MAW(000) = {000, 0000},
MAW(01)4MAW(010) = {10, 101},
MAW(10)4MAW(100) = {00, 000},
MAW(11)4MAW(110) = {0, 00, 01},

where the underlined strings are those in MAW(S) \ MAW(S0) and the strings without
underlines are those in MAW(S0) \MAW(S). Thus the lemma holds.

We move onto the case where d ≥ 3. Our first observation is that we can restrict ourselves
to the case where S is not unary. For any d, it is clear that |MAW(0d)4MAW(0d+1)| = 2.
Now let us consider 1d in the next lemma.

Lemma 11. For any d ≥ 3 let V = 1d. Then, there exists another string S of length d
over Σ2 such that S[k] = 0 for some 1 ≤ k ≤ d and |MAW(V)4MAW(V 0)| ≤ |MAW(S)4
MAW(S0)|.

Proof. Since V = 1d, MAW(V) \MAW(V 0) = {0}. Also, MAW(V 0) \MAW(V) = {00, 01}.
Thus |MAW(V)4MAW(V 0)| = 3 for any d ≥ 1.

Let S = 01d−1 and S0 = 01d−10 with d ≥ 3. Then, MAW(S0) \MAW(S) = {01k0 | 1 ≤
k ≤ d−2}∪{101} and MAW(S0)\MAW(S) = {10}. Thus we have |MAW(S)4MAW(S0)| ≥
d ≥ 3.

10

According to Lemmas 9, 10 and 11, in what follows we focus on the case where d ≥ 3
and the current window S = T [i..i+d−1] contains at least a 0. The latter condition implies
that we focus on the case where the new character α = 0 already occurs in the window S.

As in the case of non-binary alphabets, we analyze the numbers of added Type-1/Type-
2/Type-3 MAWs inM1/M2/M3 for binary strings. Recall that in the current context, a
MAW w for S0 = T [i..i+ d] is said to be of:

• Type 1 if neither w[2..] nor w[..|w| − 1] occurs in S;

• Type 2 if w[2..] occurs in S but w[..|w| − 1] does not occur in S;

• Type 3 if w[2..] is does not occur in S but w[..|w| − 1] occurs in S.

We first show the upper bound for the size ofM3 in the case where σ′ = 2.

Lemma 12. For any binary string S0 over Σ2 such that |S| = d ≥ 3, |M3| ≤ d− 2.

Proof. Recall the proof for Lemma 4. There, we proved that each MAW w of Type 3 for any
non-binary string Rα = T [i..i+ d] = T [i..j + 1] is mapped by an injection f to a distinct
position of T [i..j] in range [i, j − 1], or alternatively to a distinct position of R in range
[1, d− 1]. This showed |M3| ≤ d− 1 for σ′ ≥ 3.

Here we show that the range of such an injection f is [2, d− 1] for any binary string S
with σ′ = 2. Since the appended character is α = 0, and since the candidate x for the MAW
of Type 3 which should be mapped to the first position in S is of length 2, the candidate x
has to be either 00 or 10.

(1) If x = 00, then S[1] = 0. If 00 does not occur in S (see also the top picture of Figure 4),
then 00 is already a MAW for S (i.e. 00 ∈ MAW(S)). Thus 00 /∈ MAW(S0) \MAW(S)
in this case. Otherwise (00 occurs in S), then clearly 00 is not a MAW for S0 (see
also the middle picture of Figure 4).

(2) If x = 10, then S[1] = 1. However, since the appended character is 0, 10 must occur
somewhere in S0 (see also the bottom picture of Figure 4). Thus 10 is not a MAW for
S0.

Hence, the first position of S cannot be assigned to any MAW of Type 3 for S0, leading to
|M3| ≤ d− 2 for any binary string S of length d ≥ 3.

In other words, Lemma 12 shows that in the binary case with σ′ = 2, the maximum
number of added Type-3 MAWs is 1 less than in the case with σ′ = 3.

Next, we consider the total number of added Type-1/Type-2 MAWs.

Lemma 13. For any binary string S0 over Σ2 such that |S| = d ≥ 3 and S[i] = 0 for some
1 ≤ i ≤ d, |M1|+ |M2| ≤ 2.

Proof. Let k denote the length of the maximum run of 0’s that is a suffix of S. If S[|S|] = 1
then let k = 0. By the definition ofM1, 0k+2 is the only candidate for a Type-1 MAW for
S0, in which case au = ub = 0k+1 occurs only once in S0 as a suffix of S0. This means that
0k+2 can be a Type-1 MAW for S0 only if 0k is the longest run of 0’s in S.

Now suppose that 0k+2 is a Type-1 MAW for S0, and let a′u′0 denote a Type-2 MAW
for S0. Then, by definition, u′0 is a suffix of S0 (see also the middle of Figure 1).

11

𝑆0 = 0 1 …

1

1 0

𝑆0 =

00

0

……𝑆0 = 0 0

01 ……

𝑥

𝑥

𝑥 1 & 𝑥 2

Figure 4: Characteristics of Type-3 MAWs in the binary case with σ′ = 2, where the
rightmost 0 in gray is the new appended character in each picture.

• If |u′| > k, then 0k+1 is a suffix of u′ as shown in Figure 5. However, by the definition
of Type-2 MAWs, au′ must occur in S (see also the middle of Figure 1), which implies
that 0k+1 occurs in S. This contradicts that 0k is the longest run of 0’s in S.

• If |u′| < k, then a′u′0 = 0p with p < k + 2 must be a suffix of S0, but this contradicts
that a′u′0 is a MAW for S0.

Hence the only possible case where both Type-1 and Type-2 MAWs exist is |u′| = k. Thus
|M1|+ |M2| ≤ 2 for any binary string S0 such that S contains a 0.

𝑆0 = 0 0 0…1

𝑢! = ⋯0"#$

0 0 0…

ℳ% 𝑎!𝑢!0 𝑎′𝑢′ = ⋯0"#$

𝑆0 = 0 0 0…

0"#%

0 0 0…

ℳ$ 0"#% 0"#$

1

1

Figure 5: Collision between the new Type-2 MAW and Type-1 MAW in the binary case,
where the rightmost 0 in gray is the new appended character in each picture.

A direct consequence of Lemma 12 and Lemma13 is an upper bound for the added
MAWs |M1|+ |M2|+ |M3| ≤ d for any binary string S0 with |S| = d ≥ 3. In what follows,
we further reduce this upper bound to |M1|+ |M2|+ |M3| ≤ d− 1. For this purpose, we
introduce the next lemma:

Lemma 14. For any binary string S0 over Σ2 such that |S| = d ≥ 3, |M2| is at most the
number of 0’s in S[1..d− 1], and |M3| is at most the number of 1’s in S[3..d].

Proof. Let aub denote a MAW inM2, where a, b ∈ Σ2 and u ∈ Σ∗2.
First we consider Type-2 MAWs for S0. By the definition ofM2, au does not occur in S

but au occurs in S0, which implies that the last character of au is 0. Consider two distinct
Type-2 MAWs aub and a′u′b where a, a′, b ∈ Σ2, u, u′ ∈ Σ∗2, and |aub| < |a′u′b|. Since both
aub and a′u′b are Type-2 MAWs for S0, both au and a′u′ are suffixes of S. In addition,

12

au is a proper suffix of a′u′ since |aub| < |a′u′b|. This implies that ub and u′b cannot have
occurrences in S with the same ending positions, since otherwise aub must occur in S, a
contradiction. Since the last characters of au and a′u′ are both 0, they cannot share the
same ending positions in S. In addition, the last position d = |S| in S cannot be the ending
position of au for any Type-2 MAW aub since aub does not occur in S0. Thus, the total
number of Type-2 MAWs for S0 is upper bounded by the number of 0’s in S[1..d− 1].

Second we consider Type-3 MAWs for S0. Since ub is a suffix of S0, each Type-3 MAW
is of form au0. Also, by the definition ofM3, there has to be an occurrence of au in S. Note
that this occurrence has to be immediately followed by a 1 since otherwise au0 must occur
in S0, a contradiction. Thus, for each Type-3 MAW au0 of S0, we need an occurrence of
au1 in S. Since |au| ≥ 1, we clearly cannot use the first position of S as the ending position
of au1. Also, it follows from Lemma 12 (and its proof) that the second position of S cannot
be the ending position of au for any Type-3 MAW aub for S0. This implies that there is no
Type-3 MAW that corresponds to a 1 in the second position of S. Thus, the total number
of Type-3 MAWs for S0 is upper bounded by the number of 1’s in S[3..d].

Intuitively, Lemma 14 implies that flipping 0’s and/or 1’s in S[3..d− 1] does not increase
the total number of Type-2 and Type-3 MAWs for S0.

Lemma 15. For any binary string S0 over Σ2 with |S| = d ≥ 3, |M1|+|M2|+|M3| ≤ d−1.

Proof. Let U be a binary string over Σ2 such that U0 has the maximum total number of
added MAWs. It follows from Lemma 12 and Lemma 14 that U [3..d] = 1d−2. Recall that
by Lemma 2 Type-1 MAW must be of form 0h and 0h−1 has to be a suffix of U . However,
since (U0)[d..d+ 1] = 10 and U contains at least a 0 by Lemma 11, the only candidate 0
cannot be a Type-1 MAW for U0. Thus there is no Type-1 MAW for U0. Using Lemma 13,
we can now conclude that U [1..2] = 00, and thus U = 001d−2. Now the sets of all the added
MAWs for U0 = 001d−20 are

M1 = ∅,
M2 = {100, 101},
M3 = {01k0 | 1 ≤ k ≤ d− 3},

which leads to |M1|+ |M2|+ |M3| = d− 1 for U0. Since any other string V 0 with |V | = d
has less added MAWs than U0, the lemma holds.

Our main theorem immediately follows from Lemma 1 and Lemma 15:

Theorem 4. For any binary string S over Σ2 with |S| = d ≥ 3, |MAW(S)4MAW(S0)| ≤ d,
and this upper bound is tight.

The next corollary, which immediately follows Lemmas 9, 10, and Theorem 4, summarizes
the results of this section.

Corollary 2. For any binary string S over Σ2 with |S| = d, |MAW(S) 4 MAW(S0)| ≤
max{3, d}, and this upper bound is tight for any d ≥ 1.

13

5 Conclusions and future work

In this paper, we revisited the problem of computing the minimal absent words (MAWs) for
the sliding window model, which was first considered by Crochemore et al. [9].

We investigated combinatorial properties of MAWs for a sliding window of fixed length
d over a string of length n. Our contributions are matching upper and lower bounds for the
number of changes in the set of MAWs for a sliding window when the window is shifted
to the right by one character. For the general case where the window S and the extended
window Sα contain three or more distinct characters (i.e. σ′ ≥ 3), the number of changes in
the set of MAWs for S and Sα is at most d+ σ′ + 1 and this bound is tight. For the case
of binary alphabets (i.e. σ′ = 2), it is upper bounded by max{3, d} and this bound is also
tight.

We also gave an asymptotically tight bound O(min{d, σ}n) for the number S(T, d) of
total changes in the set of MAWs for every sliding window of length d over any string T of
length n, where σ is the alphabet size for the whole input string T .

The following open questions are intriguing:

• We showed that a matching lower bound S(T, d) ∈ Ω(min{d, σ}n) when n− d ∈ Ω(n).
Is there a similar lower bound when n− d ∈ o(n)?

• Crochemore et al. [9] gave an online algorithm that maintains the set of MAWs for
a sliding window of length d in O(σn) time. Can one improve the running time to
optimal O(min{d, σ}n)?

Acknowledgments

This work was supported by JSPS KAKENHI Grant Numbers JP20J11983 (TM), JP18K18002
(YN), JP21K17705 (YN), JP17H01697 (SI), JP16H02783 (HB), JP20H04141 (HB), JP18H04098
(MT), and by JST PRESTO Grant Number JPMJPR1922 (SI).

References

[1] Y. Almirantis, P. Charalampopoulos, J. Gao, C. S. Iliopoulos, M. Mohamed, S. P. Pissis,
and D. Polychronopoulos. On avoided words, absent words, and their application to
biological sequence analysis. Algorithms for Molecular Biology, 12(1):5, 2017.

[2] C. Barton, A. Heliou, L. Mouchard, and S. P. Pissis. Linear-time computation of
minimal absent words using suffix array. BMC Bioinformatics, 15(1):388, 2014.

[3] C. Barton, A. Heliou, L. Mouchard, and S. P. Pissis. Parallelising the computation of
minimal absent words. In PPAM 2015, pages 243–253, 2016.

[4] D. Belazzougui, F. Cunial, J. Kärkkäinen, and V. Mäkinen. Versatile succinct represen-
tations of the bidirectional Burrows-Wheeler transform. In ESA 2013, pages 133–144,
2013.

14

[5] A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. T. Chen, and J. I. Seiferas. The
smallest automaton recognizing the subwords of a text. Theor. Comput. Sci., 40:31–55,
1985.

[6] S. Chairungsee and M. Crochemore. Using minimal absent words to build phylogeny.
Theor. Comput. Sci., 450:109 – 116, 2012.

[7] P. Charalampopoulos, M. Crochemore, G. Fici, R. Mercas, and S. P. Pissis. Alignment-
free sequence comparison using absent words. Inf. Comput., 262:57–68, 2018.

[8] T. Crawford, G. Badkobeh, and D. Lewis. Searching page-images of early music scanned
with OMR: A scalable solution using minimal absent words. In ISMIR 2018, pages
233–239, 2018.

[9] M. Crochemore, A. Héliou, G. Kucherov, L. Mouchard, S. P. Pissis, and Y. Ramusat.
Absent words in a sliding window with applications. Information and Computation,
270:104461, 2020.

[10] M. Crochemore, F. Mignosi, and A. Restivo. Automata and forbidden words. Informa-
tion Processing Letters, 67(3):111–117, 1998.

[11] M. Crochemore, F. Mignosi, A. Restivo, and S. Salemi. Data compression using
antidictionaries. Proc. IEEE, 88(11):1756–1768, 2000.

[12] G. Fici and P. Gawrychowski. Minimal absent words in rooted and unrooted trees. In
SPIRE 2019, pages 152–161, 2019.

[13] Y. Fujishige, Y. Tsujimaru, S. Inenaga, H. Bannai, and M. Takeda. Computing DAWGs
and minimal absent words in linear time for integer alphabets. InMFCS 2016, volume 58,
pages 38:1–38:14, 2016.

[14] U. Manber and E. W. Myers. Suffix arrays: A new method for on-line string searches.
SIAM J. Comput., 22(5):935–948, 1993.

[15] T. Mieno, Y. Kuhara, T. Akagi, Y. Fujishige, Y. Nakashima, S. Inenaga, H. Bannai,
and M. Takeda. Minimal unique substrings and minimal absent words in a sliding
window. In SOFSEM 2020, volume 12011 of Lecture Notes in Computer Science, pages
148–160. Springer, 2020.

15

