
Summarizing and Understanding Large Graphs

Danai Koutra
School of Computer Science
Carnegie Mellon University

danai@cs.cmu.edu

U Kang
Department of Computer Science

KAIST
ukang@cs.kaist.ac.kr

Jilles Vreeken
Max Planck Institute for Informatics

and Saarland University
jilles@mpi-inf.mpg.de

Christos Faloutsos
School of Computer Science
Carnegie Mellon University

christos@cs.cmu.edu

Abstract

How can we succinctly describe a million-node graph with a few simple sentences? Given a large graph, how can we find
its most ‘important’ structures, so that we can summarize it and easily visualize it? How can we measure the ‘importance’ of
a set of discovered subgraphs in a large graph? Starting with the observation that real graphs often consist of stars, bipartite
cores, cliques and chains, our main idea is to find the most succinct description of a graph in these ‘vocabulary’ terms. To
this end, we first mine candidate subgraphs using one or more graph partitioning algorithms. Next, we identify the optimal
summarization using the Minimum Description Length (MDL) principle, picking only those subgraphs from the candidates
that together yield the best lossless compression of the graph—or, equivalently, that most succinctly describe its adjacency
matrix.

Our contributions are three-fold: (a) formulation: we provide a principled encoding scheme to identify the vocabulary
type of a given subgraph for six structure types prevalent in real-world graphs, (b) algorithm: we develop VOG, an efficient
method to approximate the MDL-optimal summary of a given graph in terms of local graph structures, and (c) applicability:
we report an extensive empirical evaluation on multi-million-edge real graphs, including Flickr and the Notre Dame web
graph.

1 Introduction
Given a large graph, such as the Facebook social network, what can we say about its structure? As most real graphs, the edge
distribution will likely follow a power law [21], but apart from that, is it random? If not, how can we efficiently and in simple
terms summarize which parts of the graph stand out, and how? The focus of this paper is exactly finding short summaries for
large graphs, in order to gain a better understanding of their characteristics.

Why not apply one of the many community detection, clustering or graph-cut algorithms that abound in the literature
[11, 15, 29, 38, 48], and summarize the graph in terms of its communities? The answer is that these algorithms do not quite
serve our goal. Typically they detect numerous communities without explicit ordering, so a principled selection procedure of
the most “important” subgraphs is still needed. In addition to that, these methods merely return the discovered communities,
without characterizing them (e.g., clique, star), and, thus, do not help the user gain further insights in the properties of the
graph.

In this paper, we propose VOG, an efficient and effective method to summarize and understand large real-world graphs.
In particular, we aim at understanding graphs beyond the so-called “cavemen” networks that only consist of well-defined,
tightly-knit clusters, which are known as cliques and near-cliques in graph terms.

The first insight is to best describe the structures in a graph using an enriched set of “vocabulary” terms: cliques and
near-cliques (which are typically considered by community detection methods), and also stars, chains and (near) bipartite
cores. The reasons we chose these “vocabulary” terms are: (a) (near-) cliques are included, and so our method works fine on
“cavemen” graphs, and (b) stars [40], chains [58] and bipartite cores [30, 48] appear very often, and have semantic meaning
(e.g., factions, bots) in the tens of real networks we have seen in practice (e.g., IMDB movie-actor graph, co-authorship
networks, netflix movie recommendations, US Patent dataset, phonecall networks).

The second insight is to formalize our goal using the Minimum Description Length (MDL) principle [51] as a lossless

(a) Original Wikipedia
Controversy graph—
plotted using the ‘spring
embedded’ layout [26]. No
structure stands out.

(b) VOG: 8 out of the 10 most
informative structures are stars
(their centers in red—Wikipedia
editors, heavy contributors etc.).

(c) VOG: The most informative
bipartite graph — ‘edit war’ —
warring factions (one of them,
in the top-left red circle), chang-
ing each-other’s edits.

(d) VOG: the second most informa-
tive bipartite graph, another ‘edit
war’, this one between vandals
(bottom left circle of red points) vs.
responsible editors (in white).

Figure 1: [Best viewed in color.] VOG: summarization and understanding of the most informative, from an information theoretic point
of view, structures of the Wikipedia Controversy graph. Nodes stand for Wikipedia contributors and edges link users who edited the
same part of the article. Without VOG, in 1a, no clear structures stand out. VOG spots stars in 1b (Wikipedia editors and other heavy
contributors), and bipartite graphs in 1c and 1d (reflecting ‘edit wars’, i.e., editors reverting others’ edits). Specifically, 1c shows the
dispute between the two parties about a controversial topic and 1d shows vandals (red circles) vs responsible Wikipedia editors.

compression problem. That is, by MDL we define the best summary of a graph as the set of subgraphs that describes the
graph most succinctly, i.e., compresses it best, and, thus, helps a human understand the main graph characteristics in a simple,
non-redundant manner. A big advantage is that our approach is parameter-free, as at any stage MDL identifies the best choice:
the one by which we save most bits.

Informally, we tackle the following problem:

PROBLEM 1. (GRAPH SUMMARIZATION - INFORMAL)

• Given: a graph
• Find: a set of possibly overlapping subgraphs
• to most succinctly describe the given graph, i.e., explain as many of its edges in as simple possible terms,
• in a scalable way, ideally linear on the number of edges.

and our contributions can be summarized as:

1. Problem Formulation: We show how to formalize the intuitive concept of graph understanding using principled,
information theoretic arguments.

2. Effective and Scalable Algorithm: We design VOG which is near-linear on the number of edges.
3. Experiments on Real Graphs: We empirically evaluate VOG on several real, public graphs spanning up to millions

of edges. VOG spots interesting patterns like ‘edit wars’ in the Wikipedia graphs (Fig. 1).

This paper builds upon and expands on [33]. There are several differences from its earlier version: (i) We provide more
details about the problem formulation and our algorithm, analyzing its time complexity, and giving illustrative examples
and figures (Sections 3,4); (ii) We provide detailed analysis of the mined summaries and findings on real graphs (Section 5);
(iii) We extended our discussion section to explain more questions that the reader may have (Section 6), and also included
qualitative comparisons between our method and state-of-the-art techniques in the related work (Section 7).

The roadmap for this paper is as follows. First, Section 2 gives the overview and motivation of our approach. Next, in
Sections 3 and 4 we respectively present the problem formulation and describe our method in detail. We empirically evaluate
VOG in Section 5 using qualitative and quantitative experiments on a variety of real graphs. We discuss its implications and
limitations in Section 6, and cover related work in Section 7. In Section 8 we round up with conclusions.

2 Proposed Method: Overview and Motivation
Before we give our two main contributions in the next sections – the problem formulation, and the search algorithm –, we
first provide the high-level outline of VOG, which stands for Vocabulary-based summarization of Graphs:

(a) We use MDL to formulate a quality function: a collection M of structures (e.g., a star here, cliques there, etc) is as
good as its description length L(G,M). Hence, any subgraph or set of subgraphs has a quality score.

(b) We give an efficient algorithm for characterizing candidate subgraphs. In fact, we allow any subgraph discovery
heuristic to be used for this, as we define our framework in general terms and use MDL to identify the structure type of
the candidates.

(c) Given a candidate set C of promising subgraphs, we show how to mine informative summaries, removing redundancy
by minimizing the compression cost.

VOG results in a list M of, possibly overlapping subgraphs, sorted in importance order (compression gain). Together these
succinctly describe the main connectivity of the graph.

The motivation behind VOG is that people cannot easily understand large graphs that appear as a clutter of nodes and
edges when visualized. On the other hand, a handful of simple structures are easily understood, and often meaningful. Next
we give an illustrating example of VOG, where the most ‘important’ vocabulary subgraphs that constitute a Wikipedia
article’s (graph) summary are semantically interesting.

Illustrating Example: In Fig. 1 we give the results of VOG on the Wikipedia Controversy graph; the nodes are editors,
and editors share an edge if they edited the same part of the article. Figure 1a shows the graph using the spring-embedded
model [26]. No clear pattern emerges, and thus a human would have hard time understanding this graph. Contrast that with
the results of VOG. Figures 1b–1d depict the same graph, where we highlight the most important structures (i.e., structures
that save the most bits) discovered by VOG. The discovered structures correspond to behavioral patterns:

• Stars ! admins (+ vandals): in Fig. 1b, with red color, we show the centers of the most important “stars”: further
inspection shows that these centers typically correspond to administrators who revert vandalisms and make corrections.

• Bipartite cores ! edit wars: Figs. 1c and 1d give the two most important near-bipartite-cores. Manual inspection
shows that these correspond to edit wars: two groups of editors reverting each others’ changes. For clarity, we denote
the members of one group by red nodes (left), and hi-light the edges to the other group in pale yellow.

3 Problem Formulation
In this section we describe the first contribution, the MDL formulation of graph summarization. To enhance readability, we
list the most frequently used symbols in Table 1.

In general, the Minimum Description Length principle (MDL) [52], is a practical version of Kolmogorov Complexity [39],
which embraces the slogan Induction by Compression. For MDL, this can be roughly described as follows. Given a set of
models M, the best model M 2 M minimizes

L(M) + L(D | M) ,

where

• L(M) is the length in bits of the description of M , and

• L(D | M) is the length, in bits, of the description of the data when encoded using the information in M .

This is called two-part or crude MDL, as opposed to refined MDL, where model and data are encoded together [24]. We
use two-part MDL because we are specifically interested in the model: those graph connectivity structures that together best
describe the graph. Further, although refined MDL has stronger theoretical foundations, it cannot be computed except for
some special cases.

Without loss of generality, we here consider undirected graphs G(V, E) of n = |V| nodes, and m = |E| edges, with no
self-loops. Our theory can be straightforwardly generalized to directed graphs—and similarly so for weighted graphs, has an
expectation or is willing to make an assumption on the distribution of the edge weights.

To use MDL for graph summarization, we need to define what our models M are, how a model M 2 M describes
data, and how we encode this in bits. We do this next. It is important to note that to ensure fair comparison, MDL requires
descriptions to be lossless, and, that in MDL we are only concerned with the optimal description lengths — not actual
instantiated code words — and hence do not have to round up to the nearest integer.

3.1 MDL for Graph Summarization. As models M , we consider ordered lists of graph structures. We write ⌦ for the
set of graph structure types that are allowed in M , i.e., that we are allowed to describe (parts of) the input graph with. We

Table 1: Description of major symbols.

Notation Description

G(V, E) graph
A adjacency matrix of G
V , n = |V| node-set and number of nodes of G respectively
E , m = |E| edge-set and number of edges of G respectively

fc, nc full clique and near clique respectively
fb, nb full bipartite core and near bipartite core respectively
st star graph
ch chain graph

⌦ vocabulary of structure types, e.g., ⌦ ✓ {fc,nc, fr ,nr , fb,nb, ch, st}
C
x

set of all candidates structures of type x 2 ⌦

C set of all candidate structures, C = [
x

C
x

M a model for G, essentially a list of node sets with associated structure types
s, t 2 M structures in M
area(s) edges of G (= cells of A) described by s
|S|, |s| cardinality of set S and number of nodes in s respectively
||s||, ||s||0 number of existing, resp. non-existing edges within the area of A that s describes

M approximation of adjacency matrix A deduced by M
E error matrix, E = M � A
� exclusive OR

L(G,M) number of bits to describe model M , and G using M
L(M) number of bits to describe model M
L(s) number of bits to describe structure s

will colloquially refer to ⌦ as our vocabulary. Although in principle any graph structure type can be a part of the vocabulary,
we here choose the 6 most common structures in real-world graphs ([30, 48, 58]) that are well-known and understood by the
graph mining community: full and near cliques (fc,nc), full and near bi-partite cores (fb,nb), stars (st), and chains (ch).
Compactly, we have ⌦ = {fc,nc, fb,nb, ch, st}. We will formally introduce these types after formalizing our goal.

Each structure s 2 M identifies a patch of the adjacency matrix A and describes how it is connected (Fig 2). We refer
to this patch, or more formally the edges (i, j) 2 A that structure s describes, as area(s,M,A), where we omit M and A
whenever clear from context.

We allow overlap between structures: nodes may be part of more than one structure. We allow, for example, cliques to
overlap. Edges, however, are described on a first-come-first-serve basis: the first structure s 2 M to describe an edge (i, j)
determines the value in A. We do not impose constraints on the amount of overlap; MDL will decide for us whether adding a
structure to the model is too costly w.r.t. the number of edges it helps to explain.

Let C
x

be the set of all possible subgraphs of up to n nodes of type x 2 ⌦, and C the union of all of those sets, C = [
x

C
x

.
For example, C

fc

is the set of all possible full cliques. Our model family M then consists of all possible permutations of all
possible subsets of C – recall that the models M are ordered lists of graph structures. By MDL, we are after the M 2 M that
best balances the complexity of encoding both A and M .

Our general approach for transmitting the adjacency matrix is as follows. First, we transmit the model M . Then, given
M , we can build the approximation M of the adjacency matrix, as defined by the structures in M ; we simply iteratively
consider each structure s 2 M , and fill out the connectivity of area(s) in M accordingly. As M is a summary, it is unlikely
that M = A. Still, in order to fairly compare between models, MDL requires an encoding to be lossless. Hence, besides
M , we also need to transmit the error matrix E, which encodes the error w.r.t. A. We obtain E by taking the exclusive OR
between M and A, i.e., E = M�A. Once the recipient knows M and E, the full adjacency matrix A can be reconstructed
without loss.

near-clique B
clique A

star C

chain D

Figure 2: Illustration of our main idea on a toy adjacency matrix: VOG identifies overlapping sets of nodes, that form vocabulary
subgraphs (cliques, stars, chains, etc). With overlap, VOG allows for soft clustering of nodes, as in clique A and near-clique B. Stars look
like inverted L shapes (e.g., star C). Chains look like lines parallel to the main diagonal (e.g., chain D).

With this in mind, we have as our main score

L(G,M) = L(M) + L(E),

where L(M) and L(E) are the numbers of bits that describe the structures, and the error matrix E respectively. We note that
L(E) maps to L(D | M), introduced in Sec. 3. That is, it corresponds to the length, in bits, of the description of the data
when encoded using the information in M . The formal definition of the problem we tackle in this paper is defined as follows.

PROBLEM 2. (MINIMUM GRAPH DESCRIPTION PROBLEM) Given a graph G with adjacency matrix A, and the graph
structure vocabulary ⌦, by the MDL principle we are after the smallest model M for which the total encoded length

L(G,M) = L(M) + L(E)

is minimal, where E = M�A is the error matrix, and M is an approximation of A deduced by M .

Next, we formalize the encoding of the model and the error matrix.

3.2 Encoding the Model. For the encoded length of a model M 2 M, we have

L(M) = LN(|M |+ 1) + log

✓
|M |+ |⌦|� 1

|⌦|� 1

◆

| {z }
of structures, in total, and per type

+

X

s2M

�
� log Pr(x(s) | M) + L(s)

�

| {z }
per structure, in order, type and details

.

First, we transmit the total number of structures in M using LN, the MDL optimal encoding for integers � 1 [52]. Next, by
an index over a weak number composition, we optimally encode the number of structures of each type x 2 ⌦ in model M .
Then, for each structure s 2 M , we encode its type x(s) with an optimal prefix code [16], and finally its structure.

To compute the encoded length of a model, we need to define L(s) per graph structure type in our vocabulary.

3.2.1 Cliques To encode a full clique, a set of fully-connected nodes as a full clique, we first encode the number of nodes,
and then their ids

L(fc) = LN(|fc|)
| {z }
of nodes

+ log

✓
n

|fc|

◆

| {z }
node ids

.

For the number of nodes we re-use LN, and we encode their ids by an index over an ordered enumeration of all possible ways
to select |fc| nodes out of n. As M generalizes the graph, we do not require that fc is a full clique in G. If only few edges are
missing, it may still be convenient to describe it as such. Every missing edge, however, adds to the cost of transmitting E.

As long as they stand out from the background distribution, less dense or near-cliques can be as interesting as full-cliques.
We encode these as follows

L(nc) = LN(|nc|)
| {z }

of nodes

+ log

✓
n

|nc|

◆

| {z }
node ids

+ log(|area(nc)|)
| {z }

of edges

+ ||nc||l1 + ||nc||0l0
| {z }

edges

.

We first transmit the number and ids of nodes as above, and then identify which edges are present and which are not using
optimal prefix codes. We write ||nc|| and ||nc||0 for resp. the number of present and missing edges in area(nc). Then,
l1 = � log((||nc||/(||nc||+ ||nc||0)), and analogue for l0, are the lengths of the optimal prefix codes for resp. present and
missing edges. The intuition is that the more dense (sparse) a near-clique is, the cheaper encoding its edges will be. Note that
this encoding is exact; no edges are added to E.

3.2.2 Bipartite Cores Bipartite cores are defined as non-empty, non-intersecting sets of nodes, A and B, for which there
are edges only between the sets A and B, and not within.

The encoded length of a full bipartite core fb is

L(fb) = LN(|A|) + LN(|B|)
| {z }

cardinality ofA resp. B

+ log

✓
n

|A|, |B|

◆

| {z }
node ids in A and B

,

where we encode the size of A, B, and then the node ids.
Analogue to cliques, we also consider near bi-partite cores, nb, where the core is not (necessarily) fully connected. To

encode a near bi-partite core we have

L(nb) = LN(|A|) + LN(|B|)
| {z }

cardinality ofA resp. B

+ log

✓
n

|A|, |B|

◆

| {z }
node ids in A and B

+ log(|area(nb)|)
| {z }

number of edges

+ ||nb||l1 + ||nb||0l0
| {z }

edges

.

3.2.3 Stars A star is specific case of the bipartite core that consists of a single node (hub) in A connected to a set B of at
least 2 nodes (spokes). For L(st) of a given star st we have

L(st) = LN(|st |� 1)

| {z }
number of spokes

+ log n

|{z}
id of hub node

+ log

✓
n� 1

|st |� 1

◆

| {z }
ids of spoke nodes

,

where |st |� 1 is the number of spokes of the star. To identify the member nodes, we first identify the hub out of n nodes, and
then the spokes from the remaining nodes.

3.2.4 Chains A chain is a list of nodes such that every node has an edge to the next node, i.e. under the right permutation
of nodes, A has only the super-diagonal elements (directly above the diagonal) non-zero. As such, for the encoded length
L(ch) for a chain ch we have

L(ch) = LN(|ch|� 1)

| {z }
of nodes in chain

+

|ch|X

i=0

log(n� i)

| {z }
node ids, in order of chain

,

where we first encode the number of nodes in the chain, and then their ids in order. Note that
P|ch|

i=0 log(n� i)  |ch| log n,
and hence by MDL is the better (i.e., as it is more efficient) way of the two to encode the member nodes of a chain.

3.3 Encoding the Error Next, we discuss how we encode the errors made by M with regard to A, store this information
in the error matrix E. There exist many different approaches for encoding the errors—amongst which appealing at first
glance is to simply identify all node pairs. However, it is important to realize that the more efficient our encoding is, the less
spurious ‘structure’ will be discovered.

We hence follow [44] and encode E in two parts, E+ and E�. The former corresponds to the area of A that M does
model, and for which M includes superfluous edges. Analogue, E� consists of the area of A not modeled by M , for which
M lacks edges. We encode these separately as they are likely to have different error distributions. Note that as we know
near cliques and near bipartite cores are encoded exactly, we ignore these areas in E+. We encode the edges in E+ and E�

similarly to how we encode near-cliques, and have

L(E+
) = log(|E+|) + ||E+||l1 + ||E+||0l0

L(E�
) = log(|E�|)| {z }

of edges

+ ||E�||l1 + ||E�||0l0| {z }
edges

.

That is, we first encode the number of 1s in E+ (resp. E�), after which we transmit the 1s and 0s using optimal prefix codes
of length l1 and l0. We choose to use prefix codes over a binomial for practical reasons, as prefix codes allow us to easily and
efficiently calculate accurate local gain estimates in our algorithm, without sacrificing much encoding efficiency (typically
< 1 bit in practice).

Size of the Search Space. Clearly, for a graph of n nodes, the search space M we have to consider for solving the Minimum
Graph Description Problem is enormous, as it consists of all possible permutations of the collection C of all possible structures
over the vocabulary ⌦. Unfortunately, it does not exhibit trivial structure, such as (weak) (anti)monotonicity, that we could
exploit for efficient search. Further, Miettinen and Vreeken [45] showed that for a directed graph finding the MDL optimal
model of only full-cliques is NP-hard. Hence, we resort to heuristics.

4 VoG: Summarization Algorithm
Now that we have the arsenal of graph encoding based on the vocabulary of structure types, ⌦, we move on to the next two
key ingredients: finding good candidate structures, i.e., instantiating C, and then mining informative graph summaries, i.e.,
finding the best model M . An illustration of the algorithm is given in Fig. 3. The pseudocode of VOG is given in Algorithm
1, and the code is available for research purposes at www.cs.cmu.edu/˜dkoutra/SRC/VoG.tar .

4.1 Step 1: Subgraph Generation. Any combination of clustering and community detection algorithms can be used
to decompose the graph into subgraphs, which need not be disjoint. These techniques include, but are not limited to
Cross-asssociations [11], Subdue [15], SLASHBURN [40], Eigenspokes [48], and METIS [29].

4.2 Step 2: Subgraph Labeling. Given a subgraph from the set of clusters or communities discovered in the previous step,
we search for the structure x 2 ⌦ that best characterizes it, with no or some errors (e.g., perfect clique, or clique with some
missing edges, encoded as error).

4.2.1 Step 2.1: Labeling Perfect Structures. First, the subgraph is tested against the vocabulary structure types (full
clique, full bipartite core, star and chain) for error-free match. The test for clique or chain is based on its degree distribution.
Specifically, if all the nodes in the subgraph of size n have degree n� 1, then it is a clique. Similarly, if all the nodes have
degree 2 except for two nodes with degree 1, the subgraph is a chain. On the other hand, a subgraph is bipartite if the
magnitudes of its maximum and minimum eigenvalues are equal. To find the node ids in the two node sets, A and B, we
use Breadth First Search (BFS) with node coloring. We note that a star is a special case of a bipartite graph, where one set
consists of only one node. If one of the node sets has size 1, then the given substructure is encoded as star.

4.2.2 Step 2.2: Labeling Approximate Structures. If the subgraph does not have a “perfect” structure (i.e., it is not a full
clique, full bipartite core, star, or chain), the search continues for the vocabulary structure type that, in MDL terms, best
approximates the subgraph. To this end, we encode the subgraph as each of the 6 candidate vocabulary structures, and choose
the structure that has the lowest encoding cost.

Let m⇤ be the graph model with only one subgraph encoded as structure 2 ⌦ (e.g., clique) and the additional edges
included in the error matrix. For reasons of efficiency, instead of calculating the full cost L(G,m⇤

) as the encoding cost
of each subgraph representation, we estimate the local encoding cost L(m⇤

) + L(E+
m

⇤) + L(E�
m

⇤), where E+
m

⇤ and E�
m

⇤

encode the incorrectly modeled, and unmodeled edges respectively (Sec. 3). The challenge of the step is to efficiently identify
the role of each node in the subgraph (e.g., hub/spoke in a star, member of set A or B in a near-bipartite core, order of nodes
in chain) for the MDL representation. We elaborate on each structure next.

• Clique: This representation is straightforward, as all the nodes have the same structural role. All the nodes are
members of the clique or the near-clique. For the full clique, the missing edges are stored in a local error matrix, E

fc

,
in order to obtain an estimate of the global encoding cost L(fc) + L(E+

fc

) + L(E�
fc

). For near-cliques we ignore E
nc

,
and, so, the encoding cost is L(nc).

• Star: Representing a given subgraph as a near-star is straightforward as well. We find the highest degree node (in
case of a tie, we choose one randomly), and set it to be the hub of the star, and identify the rest nodes as the peripheral
nodes — which are also referred to as spokes. The additional or missing edges are stored in the local Error matrix, Est.
The MDL cost of this encoding is computed as L(st) + L(E+

st

) + L(E�
st

).
• Bipartite core: In this case, the problem of identifying the role of each node reduces to finding the maximum bipartite

graph, which is known as max-cut problem, and is NP-hard. The need of a scalable graph summarization algorithm

Figure 3: Illustration of VOG step-by-step.

makes us resort to approximation algorithms. In particular, finding the maximum bipartite graph can be reduced
to semi-supervised classification. We consider two classes which correspond to the two node sets, A and B, of the
bipartite graph, and the prior knowledge is that the highest-degree node belongs to A, and its neighbors to B. To
propagate these classes/labels, we employ Fast Belief Propagation (FaBP) [35] assuming heterophily (i.e., connected
nodes belong to different classes). For near-bipartite cores L(E+

nb

) is omitted.
• Chain: Representing the subgraph as a chain reduces to finding the longest path in it, which is also NP-hard. We

therefore, employ the following heuristic. Initially, we pick a node of the subgraph at random, and find its furthest
node using BFS (temporary start). Starting from the latter and by using BFS again, we find the subsequent furthest
node (temporary end). We then extend the chain by local search. Specifically, we consider the subgraph from which all
the nodes that already belong to the chain, except for its endpoints, are removed. Then, starting from the endpoints we
employ again BFS. If new nodes are found during this step, they are added in the chain (rendering it a near-chain with
few loops). The nodes of the subgraph that are not members of this chain are encoded as error in E

ch

.

After representing the subgraph as each of the vocabulary structures x, we employ MDL to choose the representation
with the minimum (local) encoding cost, and add the structure to the candidate set, C. Finally, we associate the candidate

Algorithm 1 VOG
Input: graph G

Step 1: Subgraph Generation. Generate candidate – possibly overlapping – subgraphs using one or more graph decomposition
methods.
Step 2: Subgraph Labeling. Characterize the type of each subgraph x 2 ⌦ using MDL, identify the type x as the one that minimizes
the local encoding cost. Populate the candidate set C accordingly.
Step 3: Summary Assembly. Use the heuristics PLAIN, TOP10, TOP100, GREEDY’NFORGET (Sec. 4.3) to select a non-redundant subset
from the candidate structures to instantiate the graph model M . Pick the model of the heuristic with the lowest description cost.
return graph summary M and its encoding cost.

structure with its encoding benefit: the savings in bits for encoding the subgraph by the minimum-cost structure type, instead
of leaving its edges unmodeled and including them in the error matrix.

4.3 Step 3: Summary Assembly. Given a set of candidate structures, C, how can we efficiently induce the model M that
is the best graph summary? The exact selection algorithm, which considers all the possible ordered combinations of the
candidate structures and chooses the one that minimizes the cost, is combinatorial, and cannot be applied to any non-trivial
candidate set. Thus, we need heuristics that will give a fast, approximate solution to the description problem. To reduce the
search space of all possible permutations, we attach to each candidate structure a quality measure, and consider them in order
of decreasing quality. The measure that we use is the encoding benefit of the subgraph, which, as mentioned before, is the
number of bits that are gained by encoding the subgraph as structure x instead of noise. Our constituent heuristics are:

• PLAIN: The baseline approach gives as graph summary all the candidate structures, i.e., M = C.
• TOP-K: Selects the top-k candidate structures as sorted according to decreasing quality.
• GREEDY’NFORGET: Considers each structure in C sequentially, sorted by descending quality, and iteratively includes

each in M : as long as the total encoded cost of the graph does not increase, keeps the structure in M , otherwise
it removes it. GREEDY’NFORGET continues this process until all the structures in C have been considered. This
heuristic is more computationally demanding than the plain or top-k heuristics, but still handles large sets of candidates
structures efficiently.

VOG employs all the heuristics and by MDL picks the overall best graph summarization, or equivalently, the summarization
with the minimum description cost.

4.4 Toy Example. To illustrate how VOG works, we give an example on a toy graph. We apply VOG on the synthetic
Cavemen graph of 841 nodes and 7 547 edges, which as shown in Fig. 4 consists of two cliques separated by two stars. The
leftmost and rightmost cliques consist of 42, and 110 nodes respectively; the big star (2nd structure) has 800 nodes, and the
small star (3rd structure) 91 nodes. Here is how VOG works step-by-step:

Step 1: The raw output of the decomposition algorithm consists of the subgraphs corresponding to the stars, the full left-hand
and right-hand cliques, as well as subsets of these nodes.
Step 2: Through MDL, VOG correctly identifies the type of these structures.
Step 3: Finally, via GREEDY’NFORGET it automatically finds the true 4 structures without redundancy, and drops the
structures that consist of subsets of nodes.

The corresponding model requires 36% fewer bits than the ‘empty’ model, where the graph edges are encoded as noise.
We note that one bit gain already corresponds to twice the likelihood.

4.5 Time Complexity of VOG. For a graph G(V, E) of n = |V| nodes and m = |E| edges, the time complexity of VOG
depends on the runtime complexity of the algorithms that compose it, namely the decomposition algorithm, the subgraph
labeling, the encoding scheme L(G,M) of the model, and the structure selection (summary assembly).

For the decomposition of the graph, we use SLASHBURN which is near-linear on the number of edges of real graphs [40].
The subgraph labeling algorithms in Sec. 4 are carefully designed to be linear on the number of edges of the input subgraph.

When there is no overlap between the structures in M , the complexity of calculating the encoding scheme L(G,M)

is O(m). When there is overlap, the complexity is bigger: assume that s, t are two structures 2 M with overlap, and t has
higher quality than s, i.e., t comes before s in the ordered list of structures. Finding how much ‘new’ structure (or area in A)

Figure 4: Toy graph: VOG saves 36% in space, by successfully discovering the two cliques and two stars that we chained together.

s explains relative to t costs O(|M |2). Thus, in the case of overlapping subgraphs, the complexity of computing the encoding
scheme is O(|M |2 +m). As typically |M | ⌧ m, in practice we have O(m).

As far as the selection method is concerned, the TOP-K heuristic that we propose has complexity O(k). The
GREEDY’NFORGET heuristic has runtime O(|C| ⇥ o ⇥ m), where |C| is the number of structures identified by VOG,
and o the time complexity of L(G,M).

5 Experiments
In this section, we aim to answer the following questions:
Q1. Are the real graphs structured, or random and noisy?
Q2. What structures do the graph summaries consist of, and how can they be used for understanding?
Q3. Is VOG scalable and able to efficiently summarize large graphs?

The graphs we use in the experiments along with their descriptions are summarized in Table 2. Controversy is a
co-editor graph on a known Wikipedia controversial topic (name withheld for obvious reasons), where the nodes are users and
edges mean that they edited the same sentence. Chocolate is a co-editor graph on the ‘Chocolate’ article. The descriptions
of the other datasets are given in Table 2.

Table 2: Summary of graphs used.

Name Nodes Edges Description

Flickr [23] 404 733 2 110 078 Friendship social network
WWW-Barabasi [56] 325 729 1 090 108 WWW in nd.edu
Epinions [56] 75 888 405 740 Trust graph
Enron [19] 80 163 288 364 Enron email
AS-Oregon [7] 13 579 37 448 Router connections
Wikipedia-Controversy 1 005 2 123 Co-edit graph
Wikipedia-Chocolate 2 899 5 467 Co-edit graph

Graph Decomposition. In our experiments, we modify SLASHBURN [40], a node reordering algorithm, to generate candidate
subgraphs. The reasons we use SLASHBURN are (a) it is scalable, and (b) it is designed to handle graphs without “cavemen”
structure. We note that VOG would only benefit from using the outputs of additional decomposition algorithms.

SLASHBURN is an algorithm that reorders the nodes so that the resulting adjacency matrix has clusters or patches of
non-zero elements. The idea is that removing the top high-degree nodes in real world graphs results in the generation of
many small-sized disconnected components (subgraphs), and one giant connected component whose size is significantly
smaller compared to the original graph. Specifically, it performs two steps iteratively: (a) It removes top high degree nodes
from the original graph; (b) It reorders the nodes so that the high-degree nodes go to the front, disconnected components to
back, and the giant connected component (GCC) to the middle. During the next iterations, these steps are performed on the
giant connected component. A good node-reordering method will reveal patterns, as well as large empty areas. as shown in
Figure 5 on the Wikipedia Chocolate network.

(a) Original. (b) After re-ordering.

Figure 5: Adjacency matrix before and after node-ordering on the Wikipedia Chocolate graph. Large empty (and dense) areas appear,
aiding the graph decomposition step of VOG and the discovery of candidate structures.

In this paper, SLASHBURN is modified to decompose the input graph. In more details, we focus on the first step of the
algorithm, which removes the high degree node by “burning” its edges. This step is depicted for a toy graph in Fig. 6b, where
the green dotted line shows which edges were “burnt”. Then, the hub with its egonet, which consists of the hub’s one hop
away neighbors and the connections between them, form the first candidate structures. Moreover, the connected components
with size greater or equal to two and smaller than the size of the GCC, consist additional candidate structures (see Fig. 6c).
In the next iteration, the same procedure is applied to the giant connected component, yielding this way a set of candidate
structures. We use MDL to determine the best-fitting type per discovered candidate structure.

(a) Initial toy graph. (b) SLASHBURN on the toy graph. (c) Candidate structures (in circles).

Figure 6: Illustration of the graph decomposition and the generation of the candidate structures.

5.1 Q1: Quantitative Analysis. In this section we apply VOG to the real datasets of Table 2, and evaluate the achieved
description cost, and edge coverage, which are indicators of the discovered structures. The evaluation is done in terms of
savings w.r.t. the base encoding (ORIGINAL) of the adjacency matrix of a graph with an empty model M .

Although we refer to the description cost of the summarization techniques, we note that compression itself is not our
goal, but our means for identifying structures important for graph understanding or attention routing. This is also why it does
not make sense to compare VOG against standard matrix compression techniques: whereas VOG has the goal of describing a
graph with intelligible structures, specialized algorithms may exploit any statistical correlations to save bits.

We compare two summarization approaches: (a) ORIGINAL: The whole adjacency matrix is encoded as if it contains no
structure; that is, M = ;, and all of A is encoded through L(E�

); and (b) VOG, our proposed summarization algorithm
with the three selection heuristics (PLAIN, TOP10 and TOP100, GREEDY’NFORGET1). We ignore very small structures; the
candidate set C includes subgraphs with at least 10 nodes, except for the Wikipedia graphs where the size threshold is set to 3
nodes. Among the summaries obtained by the different heuristics, we choose the one that yields the smallest description
length.

Table 3 presents the summarization cost of each technique w.r.t. the cost of the ORIGINAL approach, as well as the
fraction of the edges that remains unexplained. The lower the ratios (i.e., the lower the obtained description length), the more

1By carefully designing the GREEDY’NFORGET heuristic to exploit memoization, we are able to efficiently compute the best structures within the
candidate set. Although restricting our search space to a small number of candidate structures –ranked in decreasing order of quality– can yield faster results,
we report results on the whole search space.

Table 3: [Lower is better.] Quantitative analysis of VOG with different summarization heuristics: PLAIN, TOP10, TOP100, and
GREEDY’NFORGET. The first column, ORIGINAL, presents the cost, in bits, of encoding the adjacency matrix with an empty model M .
For different heuristics we show the relative number of bits needed to describe the adjacency matrix. In the last four columns, we give the
fraction of edges that are not explained by the structures in the model, M , that each heuristic finds. The lowest description cost is in bold.

VOG

Graph ORIGINAL
Compression Unexplained edges

(bits) PLAIN TOP10 TOP100 GREEDY’N PLAIN TOP10 TOP100 GREEDY’N

FORGET FORGET

Flickr 35 210 972 81% 99% 97% 95% 4% 72% 39% 36%
WWW-Barabasi 18 546 330 81% 98% 96% 85% 3% 62% 51% 38%
Epinions 5 775 964 82% 98% 95% 81% 6% 65% 46% 14%
Enron 4 292 729 75% 98% 93% 75% 2% 77% 46% 6%
AS-Oregon 475 912 72% 87% 79% 71% 4% 59% 25% 12%
Chocolate 60 310 96% 96% 93% 88% 4% 70% 35% 27%
Controversy 19 833 98% 94% 96% 87% 5% 51% 12% 31%

structure is identified. For example, VOG-PLAIN describes Flickr with only 81% of the bits of the ORIGINAL approach ,
and explains all but 4% of the edges, which means that 4% of the edges are not encoded by the structures in M .

OBSERVATION 1. Real graphs do have structure; VOG, with or without structure selection, achieves better compression
than the ORIGINAL approach that assumes no structure.

GREEDY’NFORGET finds models M with fewer structures than PLAIN and TOP100–which is important for graph
understanding and guiding attention to few structures–, and often obtains (much) more succinct graph descriptions. This is
due to its ability to identify structures that are informative with regard to what it already knows. In other words, structures
that highly overlap with ones already selected into M will be much less rewarded than structures that explain unexplored
parts of the graph.

5.2 Q2: Qualitative Analysis. In this section, we showcase how to use VOG and interpret its output.

5.2.1 Graph Summaries. How does VOG summarize real graphs? Which are the most frequent structures? Table 4 shows
the summarization results of VOG for different structure selection techniques.

Table 4: Summarization of graphs by VOG (for different heuristics). The most frequent structures are the stars (st) and near-bipartite
cores (nb). For each graph and selection technique (heuristic), we provide the frequency of each structure type: ‘st’ for star, ‘nb’ for
near-bipartite cores, ‘fc’ for full cliques, ‘fb’ for full bipartite-cores, ‘ch’ for chains, and ‘nc’ for near-cliques.

PLAIN TOP10 TOP100 GREEDY’NFORGET

Graph st nb fc fb ch nc st nb st nb fb ch st nb fc fb

Flickr 24 385 3 750 281 9 - 3 10 - 99 1 - - 415 - - 1
WWW-Barabasi 10 027 1 684 487 120 26 - 9 1 83 14 3 - 403 7 - 16
Epinions 5 204 528 13 - - - 9 1 99 1 - - 2 738 - 8 -
Enron 3 171 178 3 11 - - 9 1 99 1 - - 2 323 3 3 2
AS-Oregon 489 85 - 4 - - 10 - 93 6 1 - 399 - - -
Chocolate 170 58 - - 17 - 9 1 87 10 - 3 101 - - -
Controversy 73 21 - 1 22 - 8 2 66 17 1 16 35 - - -

OBSERVATION 2. The summaries of all the selection heuristics consist mainly of stars, followed by near-bipartite cores. In
some graphs, like Flickr and WWW-Barabasi, there is a significant number of full cliques.

From Table 4 we also observe that GREEDY’NFORGET drops uninteresting structures, and reduces the graph summary.
Effectively, it filters out the structures that explain edges already explained by structures in model M .

In order to gain a better understanding of the structures that VOG finds, in Figures 7 and 8 we give the size distributions
of the most frequent structures in the Flickr social network, the WWW-Barabasi web graph and the Enron email
network.

OBSERVATION 3. The size distribution of the stars and near-bipartite cores follows a power law.

Moreover, the distribution of the size of the full cliques in Flickr follows a power law as well. As far as the distribution
of the size of full cliques and bipartite cores in WWW-Barabasi is concerned, there is no clear pattern. In Figures 7 and 8,
we denote with blue crosses the size distribution of the structures discovered by VOG-PLAIN, and with red circles the size
distribution for the structures found by VOG with the TOP100 heuristic.

(a) Stars. (b) Bipartite and near-bipartite cores. (c) Full cliques.

Figure 7: Flickr: The size of the stars, the near-bipartite cores and full cliques follows the power law distribution. Distribution of the
size of the most informative, from an information theoretic point of view, structures by VOG (blue crosses) and VOG-TOP100 (red circles).

WWW-Barabasi web graph Enron email network

(a) Stars. (b) Near-bipartite cores. (c) Stars.

(d) Full cliques. (e) Bipartite cores. (f) Near-bipartite cores.

Figure 8: The distribution of the size of the most ‘interesting’, from the MDL point of view, structures (stars, near-bipartite cores) follow the
power law distribution both in the WWW-Barabasi web graph (left) and the Enron email network (right). The distribution of structures
discovered by VOG and VOG-TOP100 are denoted by blue crosses and red circles respectively.

5.2.2 Graph Understanding. Are the ‘important’ structures found by VOG semantically meaningful? For sense-making,
we analyze the discovered subgraphs in the non-anonymized real datasets Controversy, Chocolate and Enron.

Wikipedia–Controversy. Figs. 1 and 9(a-b) illustrate the original and VOG-based visualization of the Controversy
graph. The VOG-TOP10 summary consists of 8 stars and 2 near-bipartite cores (see also Table 4). The 8 star configurations
correspond mainly to administrators, such as “Future Perfect at sunrise”, who do many minor edits in various parts of the
article and also revert vandalisms. The most interesting structures VOG identifies are the near-bipartite cores, which reflect:
(i) the conflict between the two parties, and (ii) an “edit war” between vandals and administrators or loyal Wikipedia users.

(a) VOG: The 8 top
“important” stars whose
centers are denoted with
red rectangles.

(b) VOG: The most “impor-
tant” bipartite graph (node
set A denoted by the circle
of red points).

(c) Effectiveness of GREEDY’NFORGET (in red). En-
coding cost of VOG vs. number of structures in the
model, M .

Figure 9: The VOG summary of the Controversy graph, and effectiveness of the GREEDY’NFORGET heuristic. The top 10 structures
of the graph summary of VOG consist of 8 stars (Fig. 9a) and 2 bipartite graphs (Fig. 9b, 1d). Figure 9c shows the encoding cost for the
PLAIN (dotted blue line) and GREEDY’NFORGET (solid red line) heuristics. GREEDY’NFORGET minimizes the encoding cost by greedily
selecting from a sorted, in decreasing quality order, set of structures the ones that reduce the cost. Thus, GREEDY’NFORGET leads to
better encoding costs and smaller summaries (here only 40 are chosen) than PLAIN (⇠120 structures).

In Fig. 9c, the encoding cost of VOG is given as a function of the selected structures. The dotted blue line corresponds to
the cost of the PLAIN encoding, where the structures are added sequentially in the model M , in decreasing order of quality
(local encoding benefit). The solid red line maps to the cost of the GREEDY’NFORGET heuristic. Given that the goal is
to summarize the graph in the most succinct way, and at the same time achieve low encoding cost, GREEDY’NFORGET is
effective. Finally, in Fig. 10 we consider the models M with increasing number of structures (in decreasing quality order) and
show the number of edges that each one explains. Specifically, Fig. 10a refers to the models that consist of ordered subsets of
all the structures (⇠120) that VOG-PLAIN discovered and Fig. 10b refers to models incorporating ordered subsets of the ⇠35

structures kept by VOG-GREEDY’NFORGET. We note that the slope in Fig. 10a is steep for the first ⇠35 structures, and
then increases with small rate, which means that the new structures that are added in the model M explain few new edges
(diminishing returns). On the other hand, the edges explained by the structures discovered by VOG-GREEDY’NFORGET
increase with higher rate, which signifies that VOG-GREEDY’NFORGET drops uninteresting structures that explain edges
already explained by structures in model M .

(a) VOG. (b) VOG-GNF.

Figure 10: Wikipedia-Controversy: VOG-GNF successfully drops uninteresting structures that explain edges already explained by
structures in model M . Edges explained by models with increasing number of structures generated by VOG and VOG-GNF.

Wikipedia–Chocolate The visualization of Wikipedia Chocolate is similar to the visualization of the
Controversy and is given in Fig. 11 for completeness. As shown in Table 4, the TOP10 summary of Chocolate

(a) VOG: The 9 most “important”
stars (the hubs of the stars denoted
by the cyan points).

(b) VOG: The most “important” bi-
partite graph (node set A denoted
by the rectangle of cyan points).

(c) Effectiveness of GREEDY’NFORGET (in red). En-
coding cost of VOG vs. number of structures in the
model, M .

Figure 11: VOG: summarization of the structures of the Wikipedia Chocolate graph. The top-10 structures of the VOG graph summary
consist of 9 stars (11a) and one bipartite graph (11b). In (11c) the GREEDY’NFORGET (red line) heuristic reduces the encoding cost
by keeping about 100 most important of 250 identified structures. The blue line corresponds to the encoding cost of greedily adding the
identified structures in decreasing order of encoding benefit.

contains 9 stars and 1 near-bipartite core. The center of the highest ranked star corresponds to “Chobot”, a Wikipedia bot that
fixes interlanguage links, and thus touches several, possibly unrelated parts of a page. Other stars have as hubs administrators,
who do many minor edits, as well as heavy contributors. The near-bipartite core captures the interactions between possible
vandals and administrators (or Wikipedia contributors) who were reverting each other’s edits resulting in temporary (semi-)
protection of the webpage. Figure 11c illustrates the original and VOG-based visualization of the who-edits-whose-text graph
for the article on chocolate.

Enron. The TOP10 summary for Enron has nine stars and one near-bipartite core. The centers of the most informative
stars are mainly high ranking officials (e.g., Kenneth Lay with two email accounts, Jeff Skilling, Tracey Kozadinos). As
a note, Kenneth Lay was long-time Enron CEO, while Jeff Skilling had several high-ranking positions in the company,
including CEO and managing director of Enron Capital & Trade Resources. The big near-bipartite core in Fig. 12 is loosely
connected to the rest of the graph, and represents the email communication about an extramarital affair, which was broadcast
to 235 recipients. The small bipartite graph depicted in the same spy plot captures the email activity of several employees
about a skiing trip on New Year.

Figure 12: Enron: Adjacency matrix of the top near-bipartite core found by VOG, corresponding to email communication about an
“affair”, as well as for a smaller near-bipartite core found by VOG representing email activity regarding a skiing trip.

5.3 Q3: Scalability of VOG In Fig. 13, we present the runtime of VOG with respect to the number of edges in the input
graph. For this purpose, we induce subgraphs of Notre Dame dataset (WWW-Barabasi) for which we give the dimensions
in Table 5. We ran the experiments on a Intel(R) Xeon(R) CPU 5160 at 3.00GHz, with 16GB memory. The structure
identification is implemented in Matlab, while the selection process in Python. A discussion about the runtime of VOG is
also given in the supplementary material.

OBSERVATION 4. All the steps of VOG are designed to be scalable. Figure 13 shows the complexity is O(m), i.e., VOG is
near-linear on the number of edges of the input graph.

Figure 13: VOG is near-linear on the number of edges. Runtime,
in seconds, of VOG (PLAIN) vs. number of edges in graph. For
reference we show the linear and quadratic slopes.

Name Nodes Edges

WWW-Barabasi-50k 49 780 50 624
WWW-Barabasi-100k 99 854 205 432
WWW-Barabasi-200k 200 155 810 950
WWW-Barabasi-300k 325 729 1 090 108

Table 5: Scalability: Induced subgraphs of WWW-Barabasi.

6 Discussion
The experiments show that VOG successfully solves an important open problem in graph understanding: how to find a
succinct summary for a large graph. Here we address some questions, that a reader may have.

Question 1: Why does VOG use the chosen vocabulary structures consisting of stars, (near-) cliques, (near-) bipartite cores
and chains, and not other structures?
Answer 1: We noticed that these structures appear very often, in tens of real graphs, (e.g., in patent citation network, in
phone-call networks, in netflix recommendation system, etc), while they also have semantic meaning, such as factions or
popular entities. Moreover, these graph structures are well-known and conceptually simple, making the summaries that VOG
discovers easily interpretable.

Question 2: What if a new structure such as “loops” proves to be frequent in real graphs? How can VOG handle this case?
Answer 2: VOG can easily be extended to handle new vocabulary terms. The key insight for the vocabulary term encodings
in Section 3 is to encode the necessary information as succinctly as possible. In fact, as by MDL we can straightforwardly
compare two or more model classes, MDL will immediately tell us whether a vocabulary set V1 is better than a vocabulary
set V2: the one that gives the best compression cost for the graph wins!

Question 3: Why fix the vocabulary terms beforehand, why not automatically determine the most appropriate vocabulary for
a given graph?
Answer 3: The reasons are simple: scalability and interpretability. For a vocabulary term to be useful, it needs to be easily
understood by the user. This also relates to why we define our own encoding and optimization algorithm, instead of using
off-the-shelf general purpose compressors based on Lempel-Ziv (such as gzip) or statistical compressors (such as PPMZ);
these provide state-of-the-art compression by exploiting complex statistical properties of the data, making their models very
complex to understand. Local-structure based summaries, on the other hand, are much more easily understood.

Frequent-patterns have been proven to be interpretable and powerful building blocks for data summarization [32, 57, 61].
While a powerful technique, spotting frequent subgraphs has the notoriously-expensive subgraph isomorphism problem in
the inner loop. This aside, published algorithms on discovering frequent subgraphs (e.g., [62]), are not applicable here, since
they expect the nodes to have labels (e.g., carbon atom, oxygen atom etc.) whereas we focus on large unlabeled graphs.

Question 4: Why would you focus on compression, since your goal is pattern discovery and understanding?
Answer 4: Compression is not our goal; it is only our means to find good patterns. High compression ratios are exactly a
sign that we discovered many redundancies (i.e., patterns) which can be explained in simple terms (i.e., structures), and thus,
we understand the input graph better.

Question 5: Why use SLASHBURN for the graph decomposition?
Answer 5: We use SLASHBURN to generate candidate subgraphs, because it is scalable, and designed to handle graphs
without “cavemen” structure. However, any graph decomposition method could be used instead, or even better a combination
of decomposition methods could be applied. We conjecture that the more graph decomposition methods provide the candidate
structures for VOG, the better the resulting summary will be. Essentially, there is no correct graph partitioning technique,
since each one of them works by optimizing a different goal. MDL, which is indispensable component of VOG, will be able
to discover the best structures among the set of candidate structures.

Question 6: What if you already know a few subgraph structures of the graph, can VOG take this into account?
Answer 6: Yes. If you already know that certain nodes form a clique, star, etc., it is trivial to adapt VOG to use this as its
base model M (as opposed to the empty model). When describing the graph, VOG will then only report those structures that
best describe the remainder of the graph.

Question 7: Some edge distributions are more or less likely to generate certain structures, can VOG be extended such that it
can take specific edge distributions into account and only report structures that stand out from such a distribution?
Answer 7: Yes! In this paper we aim to assume as little as necessary for the edge distribution, such that VOG is both
parameter-free and non-parametric at its core. However, as long as you can calculate the probability of an adjacency matrix,
P (E), we can trivially define L(E) = � logP (E). Hence, for instance, if your distribution would have a higher clustering
coefficient (that is, dense areas are more likely), the cost for having a dense area in E will be relatively low, and hence VOG
will only report structures that stand out from this (assumed) background distribution. Recent work by Araujo et al. [6]
explores discovering communities that exhibit a different hyperbolic —power-law degree distributed— connectivity than the
background distribution. It will be interesting to extend VOG with hyperbolic distributions for both subgraphs, as well as for
encoding the error matrix.

Question 8: What if your vocabulary terms do not explicitly show in my graph, but other, more complex ones do?
Answer 8: A core property of MDL is that it identifies the model in a model class that best describes your graph regardless
of whether the true model is in that class. More simply put, we will return the model that gives the most succinct description
of your graph in the vocabulary terms at hand: our model class. In this example, we will give a more crude description of the
graph structure than would be ideal. This means we have to spend more bits than ideal, which means we are guarded against
overfitting. For the theory behind MDL for model selection, see [24].

Question 9: VOG does not explicitly encode the linkage between structures. Can it give high-level insight in how the
structures in a summary are connected?
Answer 9: Yes. We allow nodes to participate in multiple structures, and such nodes are exactly those that implicitly ‘link’
two structures. For example, a node can be part of a clique, as well as the starting-point of a chain, therewith ‘linking’ the
clique and the chain. The linkage structure of the summary can hence be trivially extracted by inspecting whether the node
sets of structures in the summary overlap. It may depend on the task whether one prefers to show the high level linkage of the
structure, or give the details per structure in the summary.

7 Related Work
Work related to VOG comprises Minimum Description Length based approaches, as well as graph partitioning and
visualization.

7.1 MDL and Data Mining Faloutsos and Megalooikoumou [20] argue that as many data mining problems are related to
summarization and pattern discovery, they are intrinsically related to Kolmogorov complexity. Kolmogorov complexity [39]
identifies the shortest lossless algorithmic description of a dataset, and provides sound theoretical foundations for both
identifying the optimal model for a dataset, and defining what structure is. While not computable, it can be practically
implemented by the Minimum Description Length principle [24,51]—lossless compression. Examples of applications in data
mining include clustering [14], classification [36], discovering communities in matrices [10], model order selection in matrix
factorization [43, 44], outlier detection [3, 55], pattern set mining [57, 61], finding sources of infection in large graphs [49],
and for making sense of selected nodes in graphs [4]—just to name a few.

We are, to the best of our knowledge, the first to employ MDL with the goal of summarizing a graph with a vocabulary
beyond simple rectangles, as well as with allowing overlap between structures.

7.2 Graph Compression and Summarization. Boldi [9] studied the compression of web graphs using the lexicographic
localities; Chierichetti et al. [13] extended it to the social networks; Apostolico et al. [5] used BFS for compression. Maserrat
et al. [42] used multi-position linearizations for neighborhood queries. Feng et al. [22] encode edges per triangle using a lossy
encoding. SLASHBURN [40] exploits power-law behavior of real world graphs, addressing the ‘no good cut’ problem [38].
Tian et al. [59] present an attribute-based graph summarization technique with non-overlapping and covering node groups; an
automation of this method is given by Zhang et al. [63]. Toivonen et al. [60] use a node structural equivalence based approach
for compressing weighted graphs.

An alternative way of “compressing” a graph is by sampling nodes or edges from it [25, 37]. The goal of sampling is
to obtain a graph of smaller size, which maintains properties of the initial graph, such as the degree distribution, the size
distribution of connected components, the diameter, or latent properties including the community structure [41] (i.e., the graph
sample contains nodes from all the existing communities). Although graph sampling may allow better visualization [50],
unlike VOG, it cannot detect graph structures and may need additional processing in order to make sense of the sample.

None of the above provide summaries in terms of connectivity structures over non-trivial sub-graphs. Also, we should
stress that we view compression not as the goal, but as the means to identify summaries that help us to understanding the
graph in simple terms, i.e., to discover sets of informative structures that explain the graph well. Furthermore, our VOG
is designed for large scale block based matrix vector multiplication where each square block is stored independently from
each other for scalable processing in distributed platforms like MAPREDUCE [17]. The above mentioned works are not
designed for this purpose: the information of the outgoing edges of a node is tightly inter-connected to the outgoing edges of
its predecessor or successor, making them inappropriate for square block based distributed matrix vector multiplication.

7.3 Graph Partitioning. Assuming away the ‘no good cut’ issue, there are countless graph partitioning algorithms:
Koopman and Siebes [31, 32] summarize multi-relational data, or, heavily attributed graphs. Their method assumes the
adjacency matrix is already known, as it aims at describing the node attribute-values using tree-shaped patterns.

SUBDUE [15] is a famous frequent-subgraph based summarization scheme. It iteratively replaces the most frequent
subgraph in a labeled graph by a meta-node, which allows it to discover small lossy descriptions of labeled graphs. In
contract, we consider unlabeled graphs. Moreover, as our encoding is lossless, we can by MDL fairly compare between
radically different models and model classes. Navlakha et al. [46] follow a similar approach to Cook and Holder [15], by
iteratively grouping nodes that see high inter-connectivity. Their method is hence confined to summarizing a graph in terms of
non-overlapping cliques and bipartite cores. In comparison, the work of Miettinen and Vreeken [43,44] is closer to ours, even
though they discuss MDL for Boolean matrix factorization. For directed graphs, such factorizations are in fact summaries
in terms of possibly overlapping full cliques. With VOG we go beyond a single-term vocabulary, and, importantly, we can
detect and reward explicit structure within subgraphs.

Chakrabarti et al. [10] proposed the cross-association method, which provides a hard clustering of the nodes into groups,
effectively looking for near-cliques. Papadimitriou et al. [47] extended this to hierarchies, again of hard clusters. Finally,
Rosvall and Bergstrom [53] propose information-theoretic approaches for community detection, again hard-clustering the
nodes of the graph. With VOG we allow nodes to participate in multiple structures, and can summarize graphs in terms of
how subgraphs are connected, beyond identifying that they are densely connected.

7.4 Graph Visualization. Apolo [12] is a graph tool used for attention routing. The user picks a few seeds nodes
and Apolo interactively expands their vicinities enabling this way sense-making. An anomaly detection system for large
graphs, OPAvion [1], mines graph features using Pegasus [28]), spots anomalies by employing OddBall [2], and lastly
interactively visualizes the anomalous nodes via Apolo. In [54], Shneiderman proposes simply scaled density plots to
visualize scatter plots, [8] presents random and density sampling techniques for datasets with several thousands of points,
while NetRay [27] focuses on informative visualizations of the spy, distribution and correlation plots of web-scale graphs.
Dunne and Shneiderman [18] introduce the idea of motif simplification to enhance network visualization. Some of these
motifs are part of our vocabulary, but VOG also allows for near-structures, which are common in real-world graphs.

What sets VOG apart: Unlike VOG, none of the above methods meet all the following specifications: (a) gives a soft
clustering, (b) is scalable, (c) has a large vocabulary of graph primitives (beyond cliques/cavemen-graphs) and (d) is
parameter-free. Moreover, the graph visualization techniques focus on anomalous nodes or how to visualize the patterns
of the whole graph. In contrast, VOG attempts to find not specific nodes, but informative structures that summarize well
the graph, and therefore provides a small set of nodes and edges that are worth (by the MDL principle) visualizing. The
preliminary version of VOG is described in [34].

8 Conclusion
We studied the problem of succinctly describing a large graph in terms of connectivity structures. Our contributions are:

• Problem Formulation: We proposed an information theoretic graph summarization technique that uses a carefully chosen
vocabulary of graph primitives (Sec. 3).

• Effective and Scalable Algorithm: We gave VOG, an effective method which is near-linear on the number of edges of
the input graph (Sec. 5.3).

• Experiments on Real Graphs: We discussed interesting findings like exchanges between Wikipedia vandals and
responsible editors on large graphs, and also analyzed VOG quantitatively as well as qualitatively (Sec. 1, 5).

Future work includes extending the VOG vocabulary to more complex graph structures that we know appear in real
graphs, such as core-peripheries, (bipartite core whose one set also forms a clique), and so-called “jellyfish” (cliques of stars),
as well as implementing VOG in the distributed computing framework like Map-Reduce.

Acknowledgments
The authors would like to thank Niki Kittur and Jeffrey Rzeszotarski for sharing the Wikipedia datasets. Jilles Vreeken is
supported by the Cluster of Excellence “Multimodal Computing and Interaction” within the Excellence Initiative of the
German Federal Government. U Kang is partly supported by the IT R&D program of MSIP/IITP of Korea. [10044970,
Development of Core Technology for Human-like Self-taught Learning based on Symbolic Approach]. Funding was provided
by the U.S. ARO and DARPA under Contract Number W911NF-11-C-0088, by DTRA under contract No. HDTRA1-10-1-
0120, by the National Science Foundation under Grant No. IIS-1217559, and by ARL under Cooperative Agreement Number
W911NF-09-2-0053. This work is also partially supported by an IBM Faculty Award, a Google Focused Research Award,
and a Yahoo Research Alliance Gift. The views and conclusions are those of the authors and should not be interpreted as
representing the official policies, of the U.S. Government, or other funding parties, and no official endorsement should be
inferred. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding
any copyright notation here on.

References

[1] L. Akoglu, D. H. Chau, U. Kang, D. Koutra, and C. Faloutsos. Opavion: mining and visualization in large graphs. In Proceedings of
the ACM International Conference on Management of Data (SIGMOD), Scottsdale, AZ, 2012.

[2] L. Akoglu, M. McGlohon, and C. Faloutsos. Oddball: Spotting anomalies in weighted graphs. In Proceedings of the 14th Pacific-Asia
Conference on Knowledge Discovery and Data Mining (PAKDD), Hyderabad, India, 2010.

[3] L. Akoglu, H. Tong, J. Vreeken, and C. Faloutsos. COMPREX: Compression based anomaly detection. In Proceedings of the 21st
ACM Conference on Information and Knowledge Management (CIKM), Maui, HI. ACM, 2012.

[4] L. Akoglu, J. Vreeken, H. Tong, N. Tatti, and C. Faloutsos. Mining connection pathways for marked nodes in large graphs. In
Proceedings of the SIAM International Conference on Data Mining (SDM), Austin, TX. SIAM, 2013.

[5] A. Apostolico and G. Drovandi. Graph compression by bfs. Algorithms, 2(3):1031–1044, 2009.
[6] M. Araujo, S. Günnemann, G. Mateos, and C. Faloutsos. Beyond blocks: Hyperbolic community detection. In Proceedings of the

European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD),
Nancy, France, pages 50–65. Springer.

[7] As-oregon dataset. http://topology.eecs.umich.edu/data.html.
[8] E. Bertini and G. Santucci. By chance is not enough: Preserving relative density through non uniform sampling. In Proceedings of

the Information Visualisation, 2004.
[9] P. Boldi and S. Vigna. The webgraph framework I: compression techniques. In International World Wide Web Conference, 2004.

[10] D. Chakrabarti, S. Papadimitriou, D. S. Modha, and C. Faloutsos. Fully automatic cross-associations. In Proceedings of the 10th
ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), Seattle, WA, pages 79–88, 2004.

[11] D. Chakrabarti, Y. Zhan, D. Blandford, C. Faloutsos, and G. Blelloch. Netmine: New mining tools for large graphs. In SDM
Workshop on Link Analysis, Counter-terrorism and Privacy, 2004.

[12] D. H. Chau, A. Kittur, J. I. Hong, and C. Faloutsos. Apolo: interactive large graph sensemaking by combining machine learning and
visualization. In Proceedings of the 17th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), San
Diego, CA, 2011.

[13] F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher, A. Panconesi, and P. Raghavan. On compressing social networks. In
Proceedings of the 15th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), Paris, France, pages
219–228, 2009.

[14] R. Cilibrasi and P. Vitányi. Clustering by compression. IEEE Transactions on Information Technology, 51(4):1523–1545, 2005.
[15] D. J. Cook and L. B. Holder. Substructure discovery using minimum description length and background knowledge. Journal of

Artificial Intelligence Research, 1:231–255, 1994.
[16] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley-Interscience New York, 2006.
[17] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. Proceedings of the Sixth Symposium on

Operating Systems Design and Implementation (OSDI), San Francisco, CA, Dec. 2004.
[18] C. Dunne and B. Shneiderman. Motif simplification: Improving network visualization readability with fan, connector, and clique

glyphs. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI), pages 3247–3256. ACM, 2013.
[19] Enron dataset. http://www.cs.cmu.edu/ enron.
[20] C. Faloutsos and V. Megalooikonomou. On data mining, compression and Kolmogorov complexity. Data Mining and Knowledge

Discovery, 15(1):3–20, 2007.
[21] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the internet topology. In Proceedings of the ACM Special

Interest Group on Data Communication (SIGCOMM), Barcelona, Spain, pages 251–262, 1999.
[22] J. Feng, X. He, N. Hubig, C. Böhm, and C. Plant. Compression-based graph mining exploiting structure primitives. In Proceedings

of the 13th IEEE International Conference on Data Mining (ICDM), Dallas, TX, pages 181–190. IEEE, 2013.
[23] Flickr. http://www.flickr.com.
[24] P. Grünwald. The Minimum Description Length Principle. MIT Press, 2007.
[25] C. Hübler, H.-P. Kriegel, K. Borgwardt, and Z. Ghahramani. Metropolis algorithms for representative subgraph sampling. In

Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, ICDM ’08, pages 283–292, Washington, DC, USA,
2008. IEEE Computer Society.

[26] T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs. Information Processing Letters, 31:7–15, 1989.
[27] U. Kang, J.-Y. Lee, D. Koutra, and C. Faloutsos. Net-ray: Visualizing and mining billion-scale graphs. In Proceedings of the 18th

Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), Tainan, Taiwan, 2014.
[28] U. Kang, C. Tsourakakis, and C. Faloutsos. Pegasus: A peta-scale graph mining system - implementation and observations.

Proceedings of the 9th IEEE International Conference on Data Mining (ICDM), Miami, FL, 2009.
[29] G. Karypis and V. Kumar. Multilevel-way hypergraph partitioning. In Proceedings of the 36th Conference on Design

Automation(DAC),New Orleans, LA, pages 343–348, 1999.
[30] J. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. The web as a graph: Measurements, models and methods. In

Proceedings of the 5th Annual International Conference (COCOON),Tokyo, Japan, 1999.
[31] A. Koopman and A. Siebes. Discovering relational items sets efficiently. In Proceedings of the 8th SIAM International Conference

on Data Mining (SDM), Atlanta, GA, pages 108–119, 2008.
[32] A. Koopman and A. Siebes. Characteristic relational patterns. In Proceedings of the 15th ACM International Conference on

Knowledge Discovery and Data Mining (SIGKDD), Paris, France, pages 437–446, 2009.
[33] D. Koutra, U. Kang, J. Vreeken, and C. Faloutsos. VOG: Summarizing graphs using rich vocabularies. In Proceedings of the SIAM

International Conference on Data Mining (SDM), Philadelphia, PA. SIAM.
[34] D. Koutra, U. Kang, J. Vreeken, and C. Faloutsos. VoG: Summarizing and Understanding Large Graphs. In Proceedings of the SIAM

International Conference on Data Mining (SDM), Philadelphia, PA, 2014.
[35] D. Koutra, T.-Y. Ke, U. Kang, D. H. Chau, H.-K. K. Pao, and C. Faloutsos. Unifying guilt-by-association approaches: Theorems

and fast algorithms. In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML PKDD), Athens, Greece, pages 245–260, 2011.

[36] M. van Leeuwen, J. Vreeken, and A. Siebes. Compression picks the item sets that matter. In Proceedings of the 10th European
Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD), Berlin, Germany, pages 585–592, 2006.

[37] J. Leskovec and C. Faloutsos. Sampling from large graphs. In Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’06, pages 631–636, New York, NY, USA, 2006. ACM.

[38] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Statistical properties of community structure in large social and
information networks. In Proceedings of the 17th International Conference on World Wide Web (WWW), Beijing, China, pages
695–704, 2008.

[39] M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and its Applications. Springer, 1993.
[40] Y. Lim, U. Kang, and C. Faloutsos. Slashburn: Graph compression and mining beyond caveman communities. Knowledge and Data

Engineering, IEEE Transactions on, PP(99):1–1, 2014.
[41] A. S. Maiya and T. Y. Berger-Wolf. Sampling community structure. In Proceedings of the 19th International Conference on World

Wide Web (WWW), Raleigh, NC, pages 701–710, New York, NY, USA, 2010. ACM.
[42] H. Maserrat and J. Pei. Neighbor query friendly compression of social networks. In Proceedings of the 16th ACM International

Conference on Knowledge Discovery and Data Mining (SIGKDD), Washington, DC, 2010.
[43] P. Miettinen and J. Vreeken. MDL4BMF: Minimum description length for Boolean matrix factorization. ACM Transactions on

Knowledge Discovery from Data, 8(4):1–30.
[44] P. Miettinen and J. Vreeken. Model order selection for Boolean matrix factorization. In Proceedings of the 17th ACM International

Conference on Knowledge Discovery and Data Mining (SIGKDD), San Diego, CA, pages 51–59. ACM, 2011.

[45] P. Miettinen and J. Vreeken. MDL4BMF: Minimum description length for Boolean matrix factorization. Technical Report MPI-I-
2012-5-001, Max Planck Institute for Informatics, 2012.

[46] S. Navlakha, R. Rastogi, and N. Shrivastava. Graph summarization with bounded error. In Proceedings of the ACM International
Conference on Management of Data (SIGMOD), Vancouver, BC, pages 419–432, 2008.

[47] S. Papadimitriou, J. Sun, C. Faloutsos, and P. S. Yu. Hierarchical, parameter-free community discovery. In Proceedings of the
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD),
Antwerp, Belgium, pages 170–187, 2008.

[48] B. A. Prakash, M. Seshadri, A. Sridharan, S. Machiraju, and C. Faloutsos. Eigenspokes: Surprising patterns and community structure
in large graphs. Proceedings of the 14th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), Hyderabad,
India, 2010.

[49] B. A. Prakash, J. Vreeken, and C. Faloutsos. Spotting culprits in epidemics: How many and which ones? In Proceedings of the 12th
IEEE International Conference on Data Mining (ICDM), Brussels, Belgium. IEEE, 2012.

[50] D. Rafiei and S. Curial. Effectively visualizing large networks through sampling. In 16th IEEE Visualization Conference (VIS 2005),
23-28 October 2005, Minneapolis, MN, USA, page 48, 2005.

[51] J. Rissanen. Modeling by shortest data description. Automatica, 14(1):465–471, 1978.
[52] J. Rissanen. A universal prior for integers and estimation by minimum description length. The Annals of Statistics, 11(2):416–431,

1983.
[53] M. Rosvall and C. T. Bergstrom. An information-theoretic framework for resolving community structure in complex networks.

Proceedings of the National Academy of Sciences, 104(18):7327–7331, 2007.
[54] B. Shneiderman. Extreme visualization: squeezing a billion records into a million pixels. In Proceedings of the ACM International

Conference on Management of Data (SIGMOD), Vancouver, BC, 2008.
[55] K. Smets and J. Vreeken. The odd one out: Identifying and characterising anomalies. In Proceedings of the 11th SIAM International

Conference on Data Mining (SDM), Mesa, AZ, pages 804–815. SIAM, 2011.
[56] Snap. http://snap.stanford.edu/data/index.html.
[57] N. Tatti and J. Vreeken. The long and the short of it: Summarizing event sequences with serial episodes. In Proceedings of the 18th

ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), Beijing, China. ACM, 2012.
[58] L. Tauro, C. Palmer, G. Siganos, and M. Faloutsos. A simple conceptual model for the internet topology. Proceeding of the Global

Communications Conference Exhibition and Industry Forum, San Antonio, Texas, 2001.
[59] Y. Tian, R. A. Hankins, and J. M. Patel. Efficient aggregation for graph summarization. In Proceedings of the ACM International

Conference on Management of Data (SIGMOD), Vancouver, BC, pages 567–580, 2008.
[60] H. Toivonen, F. Zhou, A. Hartikainen, and A. Hinkka. Compression of weighted graphs. In Proceedings of the 17th ACM International

Conference on Knowledge Discovery and Data Mining (SIGKDD), San Diego, CA, pages 965–973, 2011.
[61] J. Vreeken, M. van Leeuwen, and A. Siebes. KRIMP: Mining itemsets that compress. Data Mining and Knowledge Discovery,

23(1):169–214, 2011.
[62] X. Yan and J. Han. gSpan: Graph-based substructure pattern mining. In IEEE International Conference on Data Mining, Los

Alamitos, CA, 2002. IEEE Computer Society Press.
[63] N. Zhang, Y. Tian, and J. M. Patel. Discovery-driven graph summarization. In Proceedings of the 26th International Conference on

Data Engineering (ICDE), Long Beach, CA, pages 880–891, 2010.

