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ABSTRACT
Given a collection of seasonal time-series, how can we find
regular (cyclic) patterns and outliers (i.e. rare events)?
These two types of patterns are hidden and mixed in the
time-varying activities. How can we robustly separate regu-
lar patterns and outliers, without requiring any prior infor-
mation?

We present CycloneM, a unifying model to capture both
cyclic patterns and outliers, and CycloneFact, a novel al-
gorithm which solves the above problem. We also present
an automatic mining framework AutoCyclone, based on
CycloneM and CycloneFact. Our method has the fol-
lowing properties; (a) effective: it captures important cyclic
features such as trend and seasonality, and distinguishes reg-
ular patterns and rare events clearly; (b) robust and accu-
rate: it detects the above features and patterns accurately
against outliers; (c) fast : CycloneFact takes linear time
in the data size and typically converges in a few iterations;
(d) parameter free: our modeling framework frees the user
from having to provide parameter values.

Extensive experiments on 4 real datasets demonstrate the
benefits of the proposed model and algorithm, in that the
model can capture latent cyclic patterns, trends and rare
events, and the algorithm outperforms the existing state-of-
the-art approaches. CycloneFact was up to 5 times more
accurate and 20 times faster than top competitors.
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1. INTRODUCTION
As time-series data has increased rapidly in size and avail-

ability, so has its potential for real-world application in di-
verse areas ranging from disaster preparation, electricity
grid monitoring, to marketing and the understanding of on-
line user activity. In particular, the task of separating high-
level patterns from anomalies is of key importance in al-
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lowing us to both accurately understand trends, as well as
detecting unusual events of significance.

Given time-varying activities, such as the search volume
for the keywords “Swimming”, “Running” and “Yoga”, how
can we find patterns and characteristics to perform market-
ing research? Especially, how can we robustly detect regu-
lar, seasonal patterns of our time series? At the same time,
how do we detect remarkable, anomalous occurrences that
an analyst might be interested in?
Preview of our results. Figure 1 shows our discoveries
related to the sports consisting of d = 3 activities: “Swim-
ming” (red), “Running” (blue) and “Yoga” (yellow) taken
from Google Trends 1. The data consists of weekly mea-
surements spanning 2004–2013. AutoCyclone discovered
the following:
• Long-term fitting : Figure 1a shows the original se-

quences of three activities as circles, and our fitted
model as solid lines. Notice that our fitting result is
visually very good and smooth, and captures the over-
all decreasing trend for “Swimming” and the overall
increasing trends for “Running” and “Yoga”. It also
captures three big spikes caused by “Olympic fever” in
the years 2004, 2008 and 2012, as shown in Figure 1d.
• Cyclic patterns and anomaly detection: Figure 1d shows

the seasonal (cyclic) patterns and outliers, on the top
and bottom of the figure, respectively. These two are
clearly separated. The regular patterns show the cyclic
seasonality (e.g., yearly periodicity) and its trend. Fig-
ure 1c shows the latent cyclic patterns that repeats
every year, which fit the data well and agree with in-
tuition with regard to various holidays and sports sea-
sons. Outliers are very clearly separated from the regu-
lar patterns, and include only a few rarely and sparsely
appearing remarkable events (e.g. “Olympic Games”).

Contributions. We propose AutoCyclone, a powerful
framework which automatically captures cyclic seasonality
by distinguishing regular patterns from outliers. AutoCy-
clone has the following desirable properties:

1. Effective: CycloneM captures long-range dynamics
and seasonal patterns in a way that allows for easy
human interpretation.

2. Robust and Accurate: CycloneFact is robust against
outliers, thus providing accurate results.

3. Fast: Computation of CycloneFact is linear on the
input size and converges in a few iterations.

1https://www.google.com/trends/
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(a) Fitted result v.s. original data.

(b) Fitting Error. (c) Cyclic patterns. (d) AutoCyclone captures regular seasonal behaviors and outliers.

Figure 1: AutoCyclone is effective for real data: (a) Our model (solid lines) fits the original data (circles) very well,
and (b) fitting values are close to the original data. (c) AutoCyclone finds distinct cyclic patterns, therefore (d) captures
smooth regular behaviors having yearly periodicity and detects outliers (e.g. “Olympic fever”).

4. Parameter-free: AutoCyclone chooses all param-
eters of CycloneFact to achieve high accuracy and
intuitiveness.

Reproducibility. We developed the proposed method in
Python 3.5. We will make our code publicly available2.

2. RELATED WORK
The problem of mining time-series has been studied exten-

sively. Traditional approaches like auto-regression (AR) and
Kalman filters and their variants have had a lot of success
as essential data mining tools.
Capturing dynamics and segmentation Capturing dy-
namics and segmentation are very important tasks to under-
stand time-series. The traditional AR, ARIMA and PLiF
[11] capture dynamics based on linear equations, but the
dynamics we want to capture is non-linear. Based on prior
knowledge, we can introduce a specific non-linear dynam-
ics model to capture it well. For competitions between co-
evolving sequences, EcoWeb [16] captures eco-system-like
dynamics. CompCube [17] is a pattern analysis method for
capturing local competition. However, because we want to
capture the dynamics without any prior information, a do-
main independent model is required.

SWAB [9], pHMM [22], AutoPlait[15] and RegimeShift[14]
capture the dynamics of sequences and segment the sequences.
Related to the clustering of time-series, an important motif,
namely, Shapelet [25] has been introduced. [24] discovers
common progression stages in event sequences.
Concept Factorization. Matrix/tensor factorizations are
powerful tools to understand latent factors of the target
datasets including time-series [21]. There have been many
applications and approaches, such as concept discovery [8],
network discovery [12] and epidemiology [18]. Marble [5] is
a sparse tensor factorization method for understanding con-
cepts in the higher order datasets. Rubik [23], the successor
of Marble, scales up and incorporates domain knowledge.

2http://www.cs.cmu.edu/~tsubasat/code/AutoCyclone.
zip

Anomaly Detection Anomaly detection is an important
task in data mining. Several existing methods capture both
regular patterns and anomalies. JSPCA[7] evaluates the de-
gree of anomalousness for principal components. For noisy
multivariate data, several works estimates (regular) latent
structure between attributes to detect anomalous behav-
iors [6] [4]. However, anomaly detection which finds deltas
against regular patterns is sensitive to intensive deltas (i.e.
spikes). This sensitiveness results in that regular patterns
include such intensitve outliers, and the patterns may be
skewed. Thus, for mining both regular patterns and out-
liers, robust to outliers is an important property. Robust
PCA [13] is a method which robustly detects principal com-
ponents while capturing outliers.
Contrast with competitors. Table 1 illustrates the rela-
tive advantages of our method. “Seasonality” means that a
method can capture periodic patterns. “Non-linear” means
that a method can capture dynamics following non-linear
differential equations. “Robust to outlier”means that a method
can clearly separate both regular patterns from outliers. A
method which can capture desired patterns in any applica-
tion domain without any prior information is “domain inde-
pendent”. A method is “parameter free” if it does not require
users to input or tune any parameters. “Auto. period detec-
tion” refers to methods which automatically determine the
periodicity of the time-series. None of the published meth-
ods have all the features that AutoCyclone has, as shown
in Table 1. In addition to those properties, one of the key
innovations of AutoCyclone is the use of “cyclic folding”
(Section 4), which allows us to perform tensor factorization
in a way that captures seasonal patterns, in a flexible way.

3. PRELIMINARIES
In this section, we briefly describe two essential back-

grounds; 1) robust matrix factorization, and 2) tensor fac-
torization. Table 2 lists the symbols used in this paper. For
vector, matrix and tensor indexing, we use the Matlab-like
notation: Ai,j denotes the (i, j)-th element of matrix A,
whereas A:,j denotes the j-th column of A.
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Table 1: Capabilities of approaches.

AR Robust PCA[13] JSPCA[7] Marble[5] EcoWeb[16] CompCube[17] AutoCyclone
Seasonality X X X X
Non-linear X X X X X X
Domain independent X X X X X
Robust to outliers X X X
Parameter free X X X
Auto. period detection X

Robust Matrix Factorization with Outlier Rejection.
Robust PCA (in short RoPCA) [13] is a novel robust ma-
trix factorization approach which controls outlier sparsity.
RoPCA is founded on the following two important assump-
tions:
• Robust estimation of mean vector m is a sensible way

for principal component analysis to be robust against
outliers.
• Outlier sparsity estimation via group Lasso [26] pro-

vides robusification.
The RoPCA estimates principal components of matrix X by
minimizing the following objective function:

{V,O} = arg min
V,O
||X− 1mT − SU−O||2F + λ2||O||2,r

where S and U are low-rank approximated matrices, O is
the outliers, λ2 is the outlier sparsity controlling parame-
ter, ||O||2,r is the row-wise group lasso penalty, and V =
{m,U,S}.
Tensor and Tensor Factorization. A tensor is a general-
ization of a matrix. We introduce some important notation
for tensors. For more detail, Kolda [10] provided a compre-
hensive overview of tensor factorization.

First, for the sake of simplicity, consider a three way tensor
X of dimension I × J ×K.

Definition 1. (Outer Product). The three way outer prod-
uct of vectors a, b, c forms a rank-1 tensor. The outer
product is defined as:

[a ◦ b ◦ c]i,j,k = aibjck.

Definition 2. (PARAFAC decomposition). The PARAFAC
(also called CP) tensor decomposition of X in k components
is defined as:

X ≈
k∑
r=1

αrAr ◦Br ◦Cr = [[α; A; B; C]]

where Ar is the r-th column of matrix A and α is scaling
coefficients. We use [[·]] for a shorthand notation of the sum
of outer products of columns of the input matrices. We as-
sume each column of A, B and C is normalized and the
scaling coefficients are stored in α.

The most popular algorithm for the PARAFAC decompo-
sition is Alternating Least Squares (CP–ALS). In this paper,
we also apply CP–ALS in our proposed algorithm.

We can convert a tensor into a matrix by unfolding it:

Definition 3. (Tensor Unfolding). The third order ten-
sor X can be unfolded (i.e. matricized) in the following three
ways: X(1), X(2), X(3) of sizes I × JK, J × IK, K × IJ ,
respectively.

Table 2: Table of Symbols.

Symbol Definition
X a tensor

X(n) mode-n matricization of a tensor
a a scalar (lowercase, italic letter)
a a column vector (lowercase, bold letter)
A a matrix (uppercase, bold letter)
AT transpose of A
A† pseudo inverse of A
⊗ Kronecker product
� Khatri-Rao product
◦ outer product
∗ element-wise multiplication
X a time-series (d attributes × n duration)
` length of period

`X a cyclic folding tensor (d×m× `,m = bn/`c)
B base trend matrix (d×m)
C cyclic pattern tensor (d×m× `)
O outliers (d×m× `)
k number of components
λ1 sparsity control parameter for C
λ2 sparsity control parameter for O

Once a tensor is unfolded into a matrix, we can apply the
usual matrix operations to it. We can also fold a matrix to
a tensor to express relationships of multiple aspects.
Quality of PARAFAC. CORCONDIA[3] heuristically as-
sesses the quality of a PARAFAC model based on core con-
sistency, that is the closeness between a super-diagonal core
tensor and the restricted Tucker 3 decomposition. Since
PARAFAC can be seen as a restricted Tucker 3 decom-
position with super-diagonal core tensor, if the estimated
PARAFAC is good, the core tensor of a Tucker decomposi-
tion restricted to use the factors of the PARAFAC decom-
position should be as close to super-diagonal as possible.
If it is far from the super-diagonal, then this indicates the
PARAFAC model is inappropriate, such as decomposition
rank or model structure is not appropriate.

We denote the core consistency of tensor X as CORCO(X ).
The core consistency score by CORCONDIA is in [−∞, 100].
If the value is 100, it suggests the estimated PARAFAC
is completely appropriate. When k=1 and PARAFAC is
not penalized (e.g. sparsified), the core consistency score
is always 100 because there are no off-super-diagonal core
elements. As k increases, the core consistency typically
decreases more or less monotonically. [3] suggested that
around 50 might be fair and negative values might be in-
valid. [20] proposed an efficient algorithm for computing
CORCONDIA. [19] proposed an automatic mining based on
this quality assesment.
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Figure 2: Illustration of AutoCyclone structure.

4. PROPOSED MODEL
In this section, we present our proposed model, namely,

CycloneM. Consider that we have a collection of activity
volumes X of d keywords, with duration n. That is, we
have X = {x1, · · · ,xi, · · · ,xd}, where xi = {xi(t)}nt=1 is a
sequence of activity about keyword i. Given a set of seasonal
time series X having cyclic period `, our goal is to (a) capture
the dynamics of X, (b) find the hidden cyclic characteristics
of X, and (c) distinguish regular cyclic patterns from rare
events.

To capture the cyclic dynamics of X on the view of cyclic
nature, we transform X into a tensor `X , which stacks pe-
riodically segmented subsequences of X. We call this trans-
formation from a matrix to the tensor, Cyclic Folding.

Definition 4. (Cyclic Folding/Unfolding). The cyclic
folding maps X to 3-mode tensor `X . `X is a periodic
tensor of size d × ` × m, m = bn/`c. The cyclic folding
f : X 7→ `X can be computed by:

`X i,τ,w = Xi,t (w = t mod `, τ = bt/`c). (1)

Inversely, the unfolding from `X into X̂ is described as:

X̂i,t = `X i,τ,w (t = `τ + w). (2)

4.1 CycloneM
In our model, we express the time-series X as a sum of 3

separate effects:
• Long-term trends: the overall changes in the time-

series from period to period. This is represented by
the base trend matrix B.
• Seasonal variation: the regular, seasonal patterns

that the time-series exhibits within each period. This
is represented by the cyclic pattern tensor C.
• Outliers: one-off events that cause anomalous changes

to the time-series. This is represented by the outlier
tensor O.

In order to capture those characteristics, first we assume
the time-series X is transposed into `X by Cyclic Folding
(1). Then, we propose a cyclic model CycloneM which
has base trend tensor B, cyclic pattern tensor C and outlier
tensor O. The model approximates `X by using these three
tensors:

`X ≈ B + C + O
C = [[α; U; V; W]]

B = B ◦ 1`

B = meand×m(`X −O)

(3)

where meand×m(·) ∈ Rd×m computes the mean over subse-
quences for each period and each attribute. Figure 2 shows

the structure of our model. In the above approximation of

`X , B and C capture trends and seasonalities, respectively.
Then B and C represent regular behaviors of `X without
outliers. For interpretability, U,V should be sparse. We do
not enforce W being sparse as that would indicate a sea-
sonal pattern that influences a small number of time points
within each period, whereas we would actually expect each
pattern to affect the entire period in a smooth manner.

A simple definition of outliers are activities which do not
follow regular cyclic seasonality, that is O = `X − B − C.
Therefore, it takes d×m× ` space: O ∈ Rd×m×`. However,
O should capture only abnormal behavior. Assuming such
remarkable abnormal behaviors are rare, O should be sparse.
Accurate estimation of outliers is extremely important for
the overall model’s performance and effectiveness.

5. PROPOSED ALGORITHM
In the previous section, we have seen how we can describe

the dynamics of multivariate sequences with respect to three
properties that we observed in real data. Now, we want to
estimate the parameter set of CycloneM. As we mentioned
previously, we need to answer (i) How can we robustly find
important patterns and seasonal characteristics (i.e., B, C)
against outliers? (ii) How can we estimate intuitive pat-
terns?

The basic idea to answer the questions is:
• Controlling outlier sparsity to robustly estimate B and

C.
• Low-rank approximation with sparse representation for

cyclic pattern tensor C.
Thus, the objective function we solve is:

Z = arg min
Z′

(||`X −Z ′||2F

+ λ1

k∑
r=1

(||Ur||1 + ||Vr||1)

+ λ2

∑
g∈G

||Og||2)

(4)

where Z = B + C + O, λ1 and λ2 are sparsity control pa-
rameters for C and O, respectively. g ∈ G is a group which
shares the outlier sparsity. The first penalty term enforces
sparsity in C by the conventional L1 (lasso) regularization.
The second penalty term enforces sparsity in O in terms of
outlier rejection. Thus, our choices of the groups G influ-
ences the model’s robustness. We will discuss about how to
design the groups in the following subsection.

To recap, the full parameter set of CycloneFact is:

F = {`, k, λ1, λ2,B,C,O}.
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5.1 Outlier Rejection for Cyclic Time-series
Let us begin with the first question, namely: how can we

robustly find important patterns and characteristics B, C,
against outliers.

Since least squares minimization is known to be very sen-
sitive to outliers, the proposed model assuming (4) will be
very influenced by outliers. Thus, the important thing is
how to control outliers O.

The group lasso regularization for outliers can enhance
the robustness of other components. The group lasso update
encourages the grouped elements to be sparse at the same
time.

We want to robustly estimate patterns at the subsequence
and period level; hence it would not make sense for spar-
sity groups to span across subsequences or periods. Instead,
since a single unusual day would be liable to affect all the
keywords on that day, the best way is to pack values for
different keyword at each tick of subsequence each period:

gτ,w = {o1,τ,w, . . . , od,τ,w},

then we employ Ogτ,w = O:,τ,w in (4).

5.2 CycloneFact
Finally, we introduce our proposed algorithm Cyclone-

Fact, a robust tensor factorization approach for modeling
cyclic time-series. CycloneFact robustly estimates cyclic
seasonal characteristics and sparsely represents rare events.

CycloneFact first estimates cyclical characteristics B
for the outlier subtracted tensor ZO. Next, we compute
sparse CP–ALS (Algorithm 2) to get sparse compact de-
scriptions of cyclic patterns C (FactorizeC). To induce spar-
sity, we use LASSO (`1) regularization, which is the standard
sparsifying technique. In FactorizeC, we use soft-thresholding.
The soft-thresholding update for sparse representation at
level λ1 is:

x = sgn(x)(|x| − λ1)+ (5)

where x is a scalar, (·)+ = max(·, 0).
We next update the outlier tensor O. We also update it

by the soft-thresholding update described as:

oi,τ,w =
oi,τ,w(||gτ,w||2 − λ2/2)+

||gτ,w||2
. (6)

We introduce the notion S[`X −B− C, (λ2/2)I] to express
the soft-thresholding update.

Algorithm 1 describes the overall procedure of Cyclone-
Fact. Given input parameters k, λ1, λ2, CycloneFact
estimates the full component set of CycloneM, F .

6. AUTOMATED MINING
In this section, we describe our automatic mining frame-

work for periodic time-series using CycloneFact. The
framework AutoCyclone can find a compact and reason-
able description of X based on our CycloneM model. Specif-
ically, the problem we want to solve is as follows:

Problem 1. Given time-series X, find a compact descrip-
tion that represents regular cyclic patterns with trends and
outliers of X, that is F = {`, k, λ1, λ2,B,C,O}.

Thus, the objective function we want to minimize is:

F = arg min
F′

< F ′ > + < `X |F ′ > . (7)

Algorithm 1 CycloneFact (`X , k, λ1, λ2)

Input: (a) Periodic Folding Tensor `X (d×m× `),
(b) number of components k, (c) Sparsity control pa-
rameter λ1, (d) Outlier sparsity parameter λ2

Output: Parameter set F∗ = {k, λ1, λ2,B,C,O}
1: O ← ∅d×m×`
2: α← (1, 1, 1)
3: randomly initialize U,V,W
4: C ← [[α; U; V; W]]
5: while not converged do
6: ZO ← `X −O
7: B← meand×m(ZO); B← B ◦ 1`
8: C ← FactorizeC(ZO −B, k, λ1)
9: O ← S[`X −B − C, (λ2/2)Id×`×m]

10: end while
11: return F∗ ← {`, k, λ1, λ2,B,C,O}

Algorithm 2 FactorizeC(X , λ1, [[α; U; V; W]])

Input: X , λ1, (optional) PARAFAC [[α; U; V; W]]
Output: PARAFAC [[α; U; V; W]]
1: while not converged. do
2: U← (W �V)(WTW ∗VTV)†

3: Normalize columns of U (storing norms in vector α.)
4: Compute (5) for all elements of U /* sparsify U */
5: V← (W �U)(WTW ∗UTU)†

6: Normalize columns of V (storing norms in vector α.)
7: Compute (5) for all elements of V /* sparsify V */
8: W← (V �U)(VTV ∗UTU)†

9: Normalize columns of W (storing norms in vector α.)
10: end while
11: return [[α; U; V; W]]

where < · > is description cost of either model or error.
< F > is model description cost of F , < `X |F > is data
coding cost (i.e., error).

We discuss about model quality by 2 separate parts. First,
to choose the best k, λ1, λ2 and `, we provide a new intuitive
coding scheme, which is based on the minimum description
length (MDL) principle. Using MDL, we assess the quality
of the sparse encoding and errors. Second, to get a high qual-
ity model, we assess the modeling quality of the PARAFAC
decomposition using a metric based on core consistency. For
rank k, we employ those two metrics to choose a model that
best summarizes the original time-series.

6.1 Description Cost
MDL follows the assumption of Ockham’s razor, which

aims to explain the data in a parsimonious way. Thus,
based on MDL, we can choose a well compressed model
which parsimoniously captures underlying patterns of the
data, by minimizing the number of bits needed to describe
the model, and to describe the data given the model.
Model description cost. The base trend B has d × `
floating points. Thus it requires d× `×CF bits, where CF

3

is the number of bits required to encode a floating point
number. C consists of [[α; U; V; W]]. α needs k × CF bits.
Ur, which is a sparse vector with size d, contains Ni,r non-
zeros, and for each nonzero we need log(d) bits to encode its
position and CF bits to encode its value. Since the number

3We assume CF=8 bits by following [16].
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of non-zeros Ni,r ranges 0 to d, it requires log(d+ 1) bits to
encode. Vr is similar. Since W is non-sparse, we encode it
in a non-sparse manner, requiring k × ` × CF bits. Outlier
tensor O is also sparse. For each of NO outliers, we need
log(d) + log(`) + log(m) bits to encode its position and CF
bits to encode its value. The number of non-zeros in O
requires log(d × ` × m + 1) bits since it is between 0 and
d × ` ×m. The number of components k requires log∗(k)4

bits. The period ` requires log(n) bits since ` is chosen from
1 to n. The description complexity of model parameter set
consists of the following terms,

• < B > = d× `× CF

• < C > = k × CF + k × `× CF
+
∑k
r=1

∑d
i=1(Ni,r(log(d) + CF ) + log(d+ 1))

+
∑k
r=1

∑m
τ=1(Nτ,r(log(m) + CF ) + log(m+ 1))

• < O > = NO(log(d) + log(`) + log(m) +CF ) + log(d×
`×m+ 1)

• < k > = log∗(k)

• < ` > = log(n).

The total model description cost < F > is the sum of the
above terms.
Data coding cost. Once we have decided the full parame-
ter set F , we can encode the cyclic folding tensor `X using
Huffman coding. A number of bits is assigned to each value
in `X , which is negative log-likelihood of its error with re-
spect to the model prediction Z under a Gaussian error
model. The encoding cost of `X given F is computed by:

< `X |F >= 2CF+

d,`,m∑
i,τ,w=1

− log2 pGauss(µ,σ2)(`X i,τ,w−Zi,τ,w)

where Zi,τ,w = Bi,τ,w +Ci,τ,w +Oi,τ,w, and 2 CF is coding
cost of µ and σ.

Finally, the total encoding cost < `X ;F > is given by:

< `X ;F > =< F > + < `X |F >

=< ` > + < k > + < B > + < C >
+ < O > + < `X |F > .

(8)

6.2 Quality of PARAFAC Model
As discussed the above, we can choose k by coding cost,

but we obtained very good results when k was chosen so that
it would have good CORCO(·) value. Thus, we restrict the
value of k, to the ones that show increase in the ‘normalized’
CORCO(·) score, defined as

qk = k × CORCO(C|k).

That is, we only consider k values, for which

qk > qk−1.

Thus we propose to solve the following optimization prob-
lem:

F = arg min
F′

< F ′ > + < `X |F ′ >

s.t. qk > qk−1 and k ≥ 1
(9)

4Here, log∗ is the universal code length for integers.

Algorithm 3 AutoCyclone (X)

Input: Time-series X
Output: Parameter set F = {`, k, λ1, λ2,B,C,O}
1: c← 0
2: /* get candidates of ` */
3: L ← PeriodgramAnalysis(X) ∪ L0

4: for all ` ∈ L do
5: `X ← f(X, `)
6: F`, c` ← AC-Fit(`X )
7: if c` < c then
8: F ← F`; c← c` /* c` is (8) of F with ` */
9: end if

10: end for
11: return F

Algorithm 4 AC-Fit(`X )

Input: Cyclic folding tensor `X
Output: Parameter set F` = {`, k, λ1, λ2,B,C,O}
1: K ← min(d`, `m,md); c` ←∞;λ2 ← 0.1(d/2)
2: while description cost can be reduced. do
3: c∗ ←∞; c0 ←∞; q0 ← 0
4: for k = 1 : K do
5: ck ←∞; λ1 ← ε /* ε = 2× 10−4 */
6: while description cost can be reduced. do
7: F ′k ← CycloneFact(`X , k, λ1, λ2)
8: c′k ←< `X ;F ′k > /* compute (8) */
9: q′k ← k × CORCO(C′k|k)

10: if q′k > qk−1 and c′k < ck then
11: ck ← c′k; qk ← q′k;Fk ← F ′k
12: end if
13: λ1 ← γ1λ1 /* γ1 = 10 */
14: end while
15: if ck > ck−1 then
16: break for loop;
17: end if
18: c∗ ← ck;F∗ ← Fk;λ2 ← γ2λ2 /* γ2 = 0.1 */
19: end for
20: if c∗ < c′ then
21: c` ← c∗;F` ← F∗
22: end if
23: end while
24: return (F`, c`)

6.3 AutoCyclone
We propose a multi-layer optimization framework Auto-

Cyclone (Algorithm 3), which searches for a good param-
eter set F based on minimum description length.

AutoCyclone contains four parameters `, k, λ1, λ2. In
the inner loop of AutoCyclone, AC-Fit (Algorithm 4)
finds the best combination of k, λ1 and λ2 for a fixed `.
Then we choose F minimizing (9).

After getting the best result from AC-Fit, AutoCyclone
searches for the best possible period ` with minimum encod-
ing cost. We choose the best period in a set of periods which
are detected by Fourier periodogram analysis and universal
periods L0

5 for each record type, such as monthly, weekly
and daily.

5For monthly, weekly and daily records, we set L0 = {12, 6},
{52, 26}, {365, 182}, respectively.
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Table 3: Datasets.

# Dataset d n record type
#1 Google Trends: Sports 3 520 weekly
#2 Google Trends: Retail companies 6 551 weekly
#3 Energy Consumption [1] 7 120 monthly
#4 Sea Surface Temperature [2] 5 3652 daily

(a) Fitted result v.s. original data. (b) Fitting error.

(c) Detected outliers. (d) Cyclic Pat-
terns.

Figure 3: AutoCyclone is effective for online user activ-
ities about retail companies.

7. EXPERIMENTS
In this section we demonstrate the effectiveness of Auto-

Cyclone with real data. The experiments were designed to
answer following questions:

Q1 Effectiveness: How successful is our method in distin-
guishing regular cyclic patterns from outliers?

Q2 Accuracy : How accurate is our method compared to
existing methods?

Q3 Scalability : How does our method scale in terms of
computational time?

Datasets. We used 4 real datasets whose characteristics
are described in Table 3. Google Trends consists of a set
of sequences which are activities of keywords from different
topics. Datasets #1 and #26 are from Google Trends. En-
ergy Consumption dataset (#3), which we use here, contains
monthly records between 2006 and 2015. For SST (#4), we
downloaded 5 daily records including some missing values
duration between 2001 and 2010. Note that the dataset is
scaled such that each sequence has a peak volume of 1.0.

7.1 Q1. Effectiveness
We now demonstrate how well our model captures the

cyclic characteristics and important patterns. We show the
time-series obtained by cyclic unfolding for the result of Au-
toCyclone. All parameters `, k, λ1, λ2 are automatically
set by AutoCyclone.

The results for the “sports” data (#1) has already been
presented in Figure 1.

Observation 1. (Seasonality and anomalies in Sports.)
Our CycloneFact captures seasonal patterns (e.g., swim-
ming peaks each July), as well as rare patterns (“Olympics”).

6Dataset #2 was also used in [16].

(a) Fitted result v.s. original data. (b) Fitting error.

(c) Detected outliers. (d) Cyclic pat-
terns.

Figure 4: AutoCyclone is effective for general seasonal
time-series about energy consumptions.

Figure 5: AutoCyclone is Doubly Robust: Not only
against outliers, but also against missing values (gray zones
in figures), AutoCyclone predicts smooth sequences on
the missing values.

Figure 3 shows the results for the top six retail compa-
nies (#2), Amazon (red), Wallmark (blue), Home Depot
(yellow), Best buy (brown), Lowes (deep blue), and Costco
(green). All activities are well fitted and smooth (Figure 3a
and 3b).

Observation 2. (Seasonality and anomalies in retail com-
panies.) Our AutoCyclone spots seasonal patterns (Fig-
ure 3c) like “Black Friday”7 (end of each November).

The “Black Friday” spikes have downward trends from 2007
to 2009 and upward trends from 2009 to 2012 which is likely
due to the global recession between 2008 and 2010. Further,
the cyclic pattern tensor (seasonality W) has a small spikes
on “Memorial Day” and “4th of July”. On “Black Friday”,
there are spikes having different intensity.
Generality: beyond online user activities. Figure 4
shows the results for the monthly energy consumptions of
seven countries.

Observation 3. (Seasonality in national energy consump-
tions.) AutoCyclone captured yearly periodical dynamics,
that is Northern countries (CA, DE, FR and GB) have peaks
in winter, while JP, KR and US have peaks in both summer
and winter (i.e. combination of W1 and W2).

The up-trend of energy consumptions for KR, and the down-
trend for JP were observed in Figure 4a. The detected
outliers includes several small spikes and a few remarkable

7“Black Friday” is a big, annual sale event at the 4th Friday
of each November.
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(a) Synthetic time-series. (b) Detected patterns and out-
liers

Figure 6: AutoCyclone decomposes (a) synthetic time-
series including Gaussian noises, and (b) identifies all spikes
as outliers.

Table 4: Anomaly Classification.

precision@15 TPR FPR
AutoCyclone 1.000 1.000 0.0466
RoPCA 0.467 0.600 0.0466

spikes (Figure 4c). In early 2012, a major cold wave oc-
curred in Europe, which agrees with the large anomalies
that we detect in FR and DE.
Robustness in the presence of missing values. We
here demonstrate how well our model captures the cyclic
characteristics and important patterns against missing val-
ues. Here we used SST, which includes some missing values.
Figure 5 shows the results for SST.

Observation 4. (Recovery of missing values.) Even if
there are missing values, the data well-fitted and the missing
values are very smoothly completed.

Above all, not only against outliers, but also against missing
values, AutoCyclone can estimate smooth sequences.

7.2 Q2. Accuracy
In this section, we discuss the fitting accuracy of Auto-

Cyclone. We measure the classification accuracy of out-
liers, and the fitting error by RMSE.

First, Table 4 displays the classification accuracy by pre-
cision@15, true positive rate (TPR) and false positive rate
(FPR) for the synthetic data including 15 spikes shown in
Figure 6a. Here, we assume that non zero in O is positive
(anomaly), and higher absolute values are more anomalous.
We compared AutoCyclone and RoPCA. Table 4 shows
that AutoCyclone distinguished very clearly with high ac-
curacy as well as 6b. Since AutoCyclone considered cyclic
patterns by periodic folding, its classification accuracy (i.e.,
precision@15 and TPR) was better than RoPCA.

Next, in terms of fitting accuracy, we measured RMSE.
Here, we compared AutoCyclone, CompCube [17], EcoWeb
[16], Marble [5] and CP–ALS. Similarly to our base trend
matrix B, Marble employs an augmented tensor to capture
overall trends, while EcoWeb and CompCube employ an
nonlinear dynamical systems model to capture interactions
between the time-series given by different keywords. Mar-
ble actually does not minimize least squares error, but we
utilized it to measure relative goodness of AutoCyclone.
There is a successor of Marble, namely, Rubik, but it is a
semi-supervised approach. We thus compare with Marble

(a) Accuracy.

(b) Scalability.

Figure 7: AutoCyclone outperforms competitors: (a)
AutoCyclone (red) is the most accurate and up to 5 times
more accurate than the other methods, (b) CycloneFact
(red) is up to 20 times faster than the other methods.

on the unsupervised basis. We employed all competitors
developed in Python 3.5.

For EcoWeb and CompCube, they set all parameters by
their own self-tuning ways. For tensor factorization meth-
ods, Marble and CP–ALS, they factorized `X by using the
same parameters as AutoCyclone.

Figure 7a shows the RMSE between original data and es-
timated data. As shown in the figure, our approach achieved
very high accuracy.

Dataset #2 may follow the ecosystems (i.e. competitions)
between attributes, which EcoWeb and CompCube assume.
Since EcoWeb and CompCube estimated such ecosystem by
the specific nonlinear dynamical systems, showing reason-
able accuracy, but AutoCyclone still performed better.

Since Marble and CP–ALS cannot capture seasonal char-
acteristics, their error was generally larger than AutoCy-
clone.

As shown by the above results, AutoCyclone could ac-
curately distinguish regular cyclic patterns from outliers,
and estimate original time-series.

7.3 Q3. Scalability
We also measured the scalability of our method. We used

the dataset whose size (number of periods) was varied from
five to ten years. Because some methods do not have the way
of automatic parameter selection, we here do not utlize such
automations, but a fixed parameter set. This experiment
was run on a machine which has 3.2 GHz quad core CPU,
16GB main memory, 1TB HDD and MacOS 10.10 operating
system.

Figure 7b shows the average execution time of Cyclone-
Fact. We compared execution times between competitors.
We observed that CycloneFact was linear with respect to
data length n. Moreover, CycloneFact was up to 3 times
faster than Marble, and 20 times faster than EcoWeb.
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8. CONCLUSIONS
We presented CycloneM, an intuitive cyclic model for

mining large scale co-evolving time series containing sea-
sonal patterns. Our main idea is that time-series having
seasonality consists of both cyclic regular patterns and local
rare events (outliers). Further, in the proposed algorithm,
CycloneFact, robust estimation of the cyclic characteris-
tics by cyclically folding the tensor detecting and removing
outliers showed some good results. AutoCyclone also au-
tomatically tunes the parameter set. Our proposed method
has the following appealing properties:

1. Effective: CycloneFact detects important charac-
teristics, such as trends and seasonal patterns, and dis-
tinguishes regular patterns from outliers.

2. Robust and Accurate: CycloneFact detects the
above characteristics and patterns accurately and ro-
bustly in the presence of outliers and missing values.

3. Fast: CycloneFact is linear on the input size.
4. Parameter-free: AutoCyclone chooses all param-

eters of CycloneFact to automatically achieve high
accuracy and intuitiveness.
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