
Scalable Data-driven PageRank:
Algorithms, System Issues, and Lessons Learned

Joyce Jiyoung Whang, Andrew Lenharth, Inderjit S. Dhillon, and Keshav Pingali

University of Texas at Austin, Austin TX 78712, USA,
{joyce,lenharth,inderjit,pingali}@{cs,ices,cs,cs}.utexas.edu

Abstract. Large-scale network and graph analysis has received con-
siderable attention recently. Graph mining techniques often involve an
iterative algorithm, which can be implemented in a variety of ways. Us-
ing PageRank as a model problem, we look at three algorithm design
axes: work activation, data access pattern, and scheduling. We investi-
gate the impact of different algorithm design choices. Using these design
axes, we design and test a variety of PageRank implementations find-
ing that data-driven, push-based algorithms are able to achieve more
than 28x the performance of standard PageRank implementations (e.g.,
those in GraphLab). The design choices affect both single-threaded per-
formance as well as parallel scalability. The implementation lessons not
only guide efficient implementations of many graph mining algorithms,
but also provide a framework for designing new scalable algorithms.

Keywords: scalable computing, graph analytics, PageRank, multi-threaded
programming, data-driven algorithm

1 Introduction

Large-scale graph analysis has received considerable attention in both the
machine learning and parallel programming communities. In machine learning,
many different types of task-specific algorithms have been developed to deal with
massive networks. In parallel computing, many different parallel programming
models and systems have been proposed for both shared memory and distributed
memory settings to ease implementation and manage parallel programs.

Recent research has observed that distributed graph analytics can have a sig-
nificant slowdown over shared-memory implementations, that is, the increase in
communication costs are not easily made up for by increase in aggregate process-
ing power or memory bandwidth. Furthermore, a remarkable number of “large”
graphs fit in the main memory of a shared memory machine; it is easy to fit
graphs with tens of billions of edges on a large workstation-class machine. Given
these factors, it is worth understanding how to efficiently parallelize graph ana-
lytics on shared-memory machines. A better understanding of how to implement
fast shared-memory analytics both greatly reduces the costs and enables richer
applications on commodity systems. Better implementation strategies also help
distributed implementations, as they tend to use shared-memory abstractions
within a host.

Many graph mining techniques usually involve iterative algorithms where
local computations are repeatedly done at a set of nodes until a convergence
criterion is satisfied. Let us define active nodes to be a set of nodes where com-
putations should be performed. Based on how the active nodes are processed, we
can broadly classify these iterative graph algorithms from three different points
of view: work activation, data access pattern, and scheduling. In this paper,
we present general approaches for designing scalable data-driven graph algo-
rithms using a case study of the PageRank algorithm. In particular, using the
three different algorithm design axes (i.e., work activation, data access pattern,
and scheduling), we present eight different formulations and in-memory parallel
implementations of PageRank algorithm. We show that by considering data-
driven formulations, we can have more flexibility in processing the active nodes,
which enables us to develop work-efficient algorithms. We focus our analysis on
PageRank in this manuscript, but our approaches and formulations can be easily
extended to other graph mining algorithms.

2 Work Activation

We first classify algorithms into two groups based on work activation: topology-
driven and data-driven algorithms. In a topology-driven algorithm, active nodes
are defined solely by the structure of a graph. For example, an algorithm which
requires processing all the nodes at each iteration is referred to as a topology-
driven algorithm. On the other hand, in a data-driven algorithm, the nodes are
dynamically activated by their neighbors, i.e., the nodes become active or inac-
tive in an unpredictable way. In many applications, data-driven algorithms can
be more work-efficient than topology-driven algorithms because the former allow
us to concentrate more on “hot spots” in a graph where more frequent updates
are needed.

2.1 Topology-driven PageRank

To explain the concepts in more detail, we now focus our discussion on PageR-
ank which is a key technique in web mining [4]. Given a graph G = (V, E) with
a vertex set V and an edge set E , let x denote a PageRank vector of size |V|.
Also, let us define Sv to be the set of incoming neighbors of node v, and Tv to
be the set of outgoing neighbors of node v. Then, node v’s PageRank, denoted

by xv, is iteratively computed by x
(k+1)
v = α

∑
w∈Sv

x(k)
w

|Tw| + (1 − α), where x
(k)
v

denotes the k-th iterate, and α is a teleportation parameter (0 < α < 1). Algo-
rithm 1 presents this iteration, which is the traditional power method that can
be used to compute PageRank. Given a user defined tolerance ε, the PageRank
vector x is initialized to be x = (1 − α)e where e denotes the vector of all 1’s.

The PageRank values are repeatedly computed until the difference between x
(k)
v

and x
(k+1)
v is smaller than ε for all the nodes. Since the Power method requires

processing all the nodes at each round, it is a topology-driven algorithm.

Algorithm1. Topology-driven PageRank
Input: graph G = (V, E), α, ε
Output: PageRank x
1: Initialize x = (1− α)e
2: while true do
3: for v ∈ V do

4: x(k+1)
v = α

∑
w∈Sv

x(k)
w

|Tw|
+ (1− α)

5: δv = |x(k+1)
v − x(k)

v |
6: end for
7: if ‖δ‖∞ < ε then
8: break;
9: end if
10: end while

11: x =
x

‖x‖1

Algorithm2. Data-driven PageRank
Input: graph G = (V, E), α, ε
Output: PageRank x
1: Initialize x = (1− α)e
2: for v ∈ V do
3: worklist.push(v)
4: end for
5: while !worklist.isEmpty do
6: v = worklist.pop()

7: xnew
v = α

∑
w∈Sv

xw

|Tw|
+ (1− α)

8: if |xnew
v − xv| ≥ ε then

9: xv = xnew
v

10: for w ∈ Tv do
11: if w is not in worklist then
12: worklist.push(w)
13: end if
14: end for
15: end if
16: end while

17: x =
x

‖x‖1

2.2 Basic Data-driven PageRank

Instead of processing all the nodes in rounds, we can think of an algorithm
which dynamically maintains a working set. Algorithm 2 shows a basic data-
driven PageRank. Initially, the worklist is set to be the entire vertex set. The
algorithm proceeds by picking a node from the worklist, computing the node’s
PageRank, and adding its outgoing neighbors to the worklist. To examine con-
vergence of the data-driven PageRank, let us rewrite the problem in the form of
a linear system. We define a row-stochastic matrix P to be P ≡ D−1A where
A is an adjacency matrix and D is the degree diagonal matrix. We assume that
there is no self-loop in the graph. Then, the PageRank problem requires solv-
ing the linear system (I − αP T)x = (1 − α)e, and the residual is defined to
be r = (1 − α)e − (I − αP T)x. In this setting, it has been shown in [9] that
each local computation in Algorithm 2 decreases the residual. Indeed, when a
node v’s PageRank is updated, its residual rv becomes zero, and it can be shown
that αrv/|Tv| is added to each of its outgoing neighbors’ residuals. Thus, we
can show that Algorithm 2 converges, and on termination, it is guaranteed that
the residual ‖r‖∞ < ε. From the next section, we will focus on the data-driven
formulation of PageRank, and build up various variations.

3 Data Access Pattern

Data access pattern (or memory access pattern) is an important factor in
designing a scalable graph algorithm. When an active node is processed, there
can be a particular data access pattern. For example, some algorithms require
reading a value of an active node and updating its outgoing neighbors, whereas
some algorithms require reading values from incoming neighbors of an active
node and updating the active node’s value. Based on these data access patterns,
we can classify algorithms into three categories: pull-based, pull-push-based, and
push-based algorithms.

Algorithm3. Pull-Push-based PageRank
Input: graph G = (V, E), α, ε
Output: PageRank x
1: Initialize x = (1− α)e
2: Initialize r = 0
3: for v ∈ V do
4: for w ∈ Sv do

5: rv = rv +
1

|Tw|
6: end for
7: rv = (1− α)αrv
8: end for
9: for v ∈ V do
10: worklist.push(v)
11: end for
12: while !worklist.isEmpty do
13: v = worklist.pop()

14: xv = α
∑

w∈Sv

xw

|Tw|
+ (1− α)

15: for w ∈ Tv do
16: roldw = rw

17: rw = rw +
rvα

|Tv|
18: if rw ≥ ε and roldw < ε then
19: worklist.push(w)
20: end if
21: end for
22: rv = 0
23: end while

24: x =
x

‖x‖1

Algorithm4. Push-based PageRank
Input: graph G = (V, E), α, ε
Output: PageRank x
1: Initialize x = (1− α)e
2: Initialize r = 0
3: for v ∈ V do
4: for w ∈ Sv do

5: rv = rv +
1

|Tw|
6: end for
7: rv = (1− α)αrv
8: end for
9: for v ∈ V do
10: worklist.push(v)
11: end for
12: while !worklist.isEmpty do
13: v = worklist.pop()
14: xnew

v = xv + rv
15: for w ∈ Tv do
16: roldw = rw

17: rw = rw +
rvα

|Tv|
18: if rw ≥ ε and roldw < ε then
19: worklist.push(w)
20: end if
21: end for
22: rv = 0
23: end while

24: x =
x

‖x‖1

3.1 Pull-based PageRank

In pull-based algorithms, an active node pulls (reads) its neighbors’ values
and updates its own value. Note that pull-based algorithms require more read
operations than write operations in general because the write operation is only
performed on the active node. In the PageRank example, Algorithms 1 and 2
are both pull-based algorithms because an active node pulls (reads) its incoming
neighbors’ PageRank values and updates its own PageRank.

3.2 Pull-Push-based PageRank

In pull-push-based algorithms, an active node pulls (reads) its neighbors’ val-
ues and also pushes (updates) its neighbors’ values. When we consider the cost
for processing an active node, pull-push-based algorithms might be more expen-
sive than pull-based algorithms as they require both read and write operations
on neighbors. However, in terms of information propagation, pull-push-based al-
gorithms can have advantages because in pull-push-based algorithms, an active
node can propagate information to its neighbors whereas in pull-based algo-
rithms, an active node passively receives information from its neighbors.

Now, we transform the basic data-driven PageRank into a pull-push-based
algorithm. In Algorithm 2, whenever a node’s PageRank is updated, the residuals
of its outgoing neighbors are increased. Thus, to guarantee that the maximum

residual is smaller than ε, all the outgoing neighbors of an active node should
be added to the worklist. However, if we explicitly compute and maintain the
residuals, we do not need to add all the outgoing neighbors of an active node,
instead, we only need to add the outgoing neighbors whose residuals become
greater than or equal to ε. In this way, we can filter out some work in the worklist.
In Algorithm 3, the initial residual r(0) is computed by r(0) = (1 − α)αP Te
(lines 3–8). Each active node pulls its incoming neighbors’ PageRank values (line
14), and pushes residuals to its outgoing neighbors (line 17). Then, an outgoing
neighbor w of the active node v is added to the worklist only if the updated
residual rw is greater than or equal to ε and its old residual is less than ε. The
second condition allows us to avoid having duplicates in the worklist (i.e., we
add a node to the worklist only when its residual crosses ε). In this algorithm,
there is a trade-off between overhead for residual computations and filtering out
work in the worklist. We empirically observe that in many cases, the benefit of
filtering overcomes the overhead for residual computations.

3.3 Push-based PageRank

In push-based algorithms, an active node updates its own value, and only
pushes (updates) its neighbors’ values. Compared to pull-based algorithms, push-
based algorithms can be more costly in the sense that they require more write op-
erations. However, push-based algorithms invoke more frequent updates, which
might be helpful to achieve a faster information propagation over the network.
Compared to pull-push-based algorithms, push-based algorithms can be more
efficient because they only require write operations instead of read & write op-
erations. To design a push-based PageRank, we need to notice that the (k+1)-st
PageRank update of node v is equivalent to the sum of the k-th PageRank of
v and its k-th residual. This can be derived from the linear system formulation
discussed in Section 2.2. Thus, we can formulate a push-based PageRank as fol-

lows: for each active node v, its PageRank is updated by x
(k+1)
v = x

(k)
v + r

(k)
v .

Algorithm 4 shows the full procedure. Note that the only difference between
Algorithm 3 and Algorithm 4 is line 14. In Algorithm 4, an active node updates
its own PageRank and the residuals of its outgoing neighbors.

4 Scheduling

Task scheduling, the order in which tasks are executed, can be very impor-
tant to graph algorithms [11]. For example, in data-driven PageRank, we see
that whenever a node v has residual rv, and its PageRank is then updated, the
total residual is decreased “at least” or “exactly” by rv(1−α). This suggests that
if we process “large residual” nodes first, the algorithm might converge faster.
Thus, we can define a node v’s priority pv to be the residual per unit work,
i.e., pv = rv/dv where dv = |Sv| + |Tv| for the pull-push-based PageRank, and
dv = |Tv| in the push-based algorithm. Realizing the potential benefits in conver-
gence requires priority scheduling. In priority scheduling, each task is assigned

a value, the priority, and scheduled in increasing (or decreasing) order. More so-
phisticated schedulers allow modifying the priority of existing tasks, but this is
an expensive operation not commonly supported in parallel systems. Practical
priority schedulers have to trade off several factors: efficiency, communication
(and thus scaling), priority fidelity, and set-semantics (here, the “set-semantics”
means that there are no duplicate work items in the worklist). In general, both
priority fidelity and set-semantics require significant global knowledge and com-
munication, thus are not scalable. To investigate the sensitivity of PageRank to
different design choices in a priority scheduler, we use two different designs: one
which favors priority fidelity but gives up set-semantics and one which preserves
set-semantics at the expense of priority fidelity. We compare these with scal-
able non-priority schedulers to see if the improved convergence outweighs the
increased cost of priority scheduling.

The first scheduler we use is the scalable, NUMA-aware OBIM (ordered-
by-integer-metric) priority scheduler [7]. This scheduler uses an approximate
consensus protocol to inform a per-thread choice to search for stealable high-
priority work or to operate on local near-high-priority work. Various underlying
data structures and stealing patterns are aware of the machine’s memory topol-
ogy and optimized to maximize information propagation while minimizing cache
coherence cost. OBIM favors keeping all threads operating on high priority work
and does not support either set-semantics or updating the priority of existing
tasks. To handle this, tasks are created for PageRank every time a node’s prior-
ity changes, potentially generating duplicate tasks in the scheduler. Tasks with
outdated priorities are quickly filtered out at execution time (a process which
consumes only a few instructions).

The second scheduler we use is a bulk-synchronous priority scheduler. This
scheduler operates in rounds. Each round, all items with priority above a thresh-
old are executed. Generated tasks and unexecuted items are placed in the next
round. The range and mean are computed for the tasks, allowing the thresh-
old to be chosen for each round based on the distribution of priorities observed
for that round. This organization makes priority updates simple; priorities are
recomputed every round. Further, set-semantics may be trivially maintained.
However, to minimize the overhead of bulk-synchronous execution, each round
must have sufficient work to amortize the barrier synchronization. This produces
a schedule of tasks which may deviate noticeably from the user requested order.

We also consider FIFO- and LIFO-like schedules (parallel schedulers cannot
both scale and preserve exact FIFO and LIFO order). It is obvious that a LIFO
scheduler is generally bad for PageRank. Processing nodes after a single neigh-
bor is visited will process the node once for each in-neighbor. FIFO schedulers
provide time for a node to accumulate pending changes from many neighbors
before being processed. We use a NUMA-aware scheduler, similar to that from
Galois and QThreads, to do scalable, fast FIFO-like scheduling.

5 Related Work
Our approaches of considering three different algorithm design axes are mainly

motivated by the Tao analysis [12] where the concepts of topology-driven and

data-driven algorithms have been studied in the context of amorphous data-
parallelism. While Tao analysis has been proposed for a general parallel pro-
gramming framework, our analysis is geared more towards designing new scalable
data mining algorithms.

For scalable parallel computing, many different types of parallel program-
ming models have been proposed, e.g., Galois [10], Ligra [13], GraphLab [8],
Priter [15], and Maiter [16]. Since PageRank is a popular benchmark for paral-
lel programming models, various versions of PageRank have been implemented
in different parallel platforms in a rather ad hoc manner. Also, in data mining
communities, PageRank has been extensively studied, and many different ap-
proximate algorithms (e.g., [1], [6]) have been developed over the years [3]. The
Gauss–Seidel style update of PageRank is studied in [9], and parallel distributed
PageRank also has been developed [5]. Our PageRank formulations can be con-
sidered as variations of these previous studies. Our contribution in this paper is
to systematically analyze and discuss various PageRank implementations with
the perspective of designing scalable graph mining methodologies.

Even though we have focused our discussion on PageRank in this manuscript,
our approaches can be easily extended to other data mining algorithms. For
example, in semi-supervised learning, label propagation is a well-known method
[2] which involves fairly similar computations as PageRank. We expect that our
data-driven formulations can be applied to the label propagation method. Also, it
has been shown that there is a close relationship between personalized PageRank
and community detection [14], [1]. So, parallel data-driven community detection
can be another interesting application of our analysis.

6 Experimental Results

Experimental Setup. To see the performance and scaling sensitivity of PageR-
ank to the design considerations in this paper, we implement a variety of PageR-
ank algorithms, trying different scheduling and data access patterns. All imple-
mentations are written using the Galois System [10]. Table 1 summarizes the
design choices for each implementation. Pseudo-code and more detailed discus-
sions of each appear in previous sections. We also compare our results to a
third-party baseline, namely GraphLab, varying such parameters as are avail-

Algorithm Activation Access Schedule

dd-push Data-driven Push FIFOs w/ Stealing
dd-push-prs Data-driven Push Bulk-sync Priority
dd-push-prt Data-driven Push Async Priority
dd-pp-rsd Data-driven Pull-Push FIFOs w/ Stealing
dd-pp-prs Data-driven Pull-Push Bulk-sync Priority
dd-pp-prt Data-driven Pull-Push Async Priority
dd-basic Data-driven Pull FIFOs w/ Stealing
power-iter Topology Pull Load Balancer

Table 1. Summary of algorithm design choices

nodes # edges CSR size source

pld 39M 623M 2.7G webdatacommons.org/hyperlinkgraph/

sd1 83M 1,937M 7.9G webdatacommons.org/hyperlinkgraph/

Twitter 51M 3,228M 13G twitter.mpi-sws.org/

Friendster 67M 3,623M 14G archive.org/details/friendster-dataset-201107

Table 2. Input Graphs

dd-push dd-push-prs dd-push-prt dd-pp-rsd dd-pp-prs dd-pp-prt dd-basic power-iter

sd1 20.9 21.8 13.7 10.9 9.1 7.0 6.5 1.4
frd 18.5 17.1 9.0 14.7 11.5 6.2 9.2 6.1
Table 3. Speedup on 40 threads relative to best serial on sd1 and friendster (frd)

able in that implementation. For all experiments, we use α = 0.85, ε = 0.01. We
use a 4 socket Xeon E7-4860 running at 2.27GHz with 10 cores per socket and
128GB RAM. GraphLab was run in multi-threaded mode.

Datasets. We use four real-world networks, given in Table 2. Twitter and
Friendster are social networks, and pld and sd1 are hyperlink graphs. These
graphs range from about 600 million edges to 3.6 billion edges. These range in
size for in-memory compressed sparse row representations from 2.7GB to 14GB
for the directed graph. Most of the algorithms require tracking both in-edges and
out-edges, making the effective in-memory size approximately twice as large.

Results. Figure 1 shows runtime, self-relative scalability, and speedup against
the best single-threaded algorithm for the pld and twitter graphs. In Table 3, the
final speedups are shown on the other inputs. We note that GraphLab ran out of
memory for all but the smallest (pld) input. On pld, the serial GraphLab perfor-
mance was approximately the same as the closest Galois implementation, power-
iter, but GraphLab scaled significantly worse. Several broad patterns can be seen
in the results. First, all data-driven implementations outperform topology im-
plementation. The best data-driven PageRank implementation is 28x faster than
GraphLab, and 10-20x faster than Galois power-iter, depending on the thread
count. Second, push-only implementations outperform pull-push implementa-
tions which outperform a pure pull-based version. Finally, priority-scheduled
versions scale better but perform worse than a fast, non-priority scheduler.

One surprising result is that pulling to compute PageRank and pushing resid-
uals outperforms a pure pull-based version (dd-pp-* vs. dd-basic). The read-
mostly nature of pull-based algorithms are generally more cache friendly. Push-
based algorithms have a much larger write-set per iteration, and writes to com-
mon locations fundamentally do not scale. The extra cost of the pushes, however,
is made up by a reduction in the number of tasks. Table 4 shows the number
of completed tasks for each algorithm, and we see that pull-push methods (dd-
pp-rsd) lead to 70-80% reduction in the number of tasks executed (compared to
dd-basic). The pushing of residual allows a node to selectively activate a neigh-
bor, and thus greatly reduces the total work performed (effectively, PageRanks
are only computed when they are needed). On the other hand, the basic pull
algorithm must unconditionally generate tasks for each of a node’s neighbors

10
0

10
1

10
2

10
1

10
2

10
3

10
4

no. of threads

ru
n

tim
e

(s
ec

.)

run time vs. no. of threads

dd−push
dd−push−prs
dd−push−prt
dd−pp−rsd
dd−pp−prs
dd−pp−prt
dd−basic
power−iter
GraphLab

(a) pld run time

0 10 20 30 40
0

5

10

15

20

25

30

35

40

no. of threads

sc
al

ab
ili

ty

scalability vs. no. of threads

dd−push
dd−push−prs
dd−push−prt
dd−pp−rsd
dd−pp−prs
dd−pp−prt
dd−basic
power−iter
ideal
GraphLab

(b) pld scalability

0 10 20 30 40
0

5

10

15

20

25

no. of threads

sp
ee

du
p

speedup vs. no. of threads

dd−push
dd−push−prs
dd−push−prt
dd−pp−rsd
dd−pp−prs
dd−pp−prt
dd−basic
power−iter
GraphLab

(c) pld speedup

10
0

10
1

10
2

10
2

10
3

10
4

10
5

no. of threads

ru
n

tim
e

(s
ec

.)

run time vs. no. of threads

dd−push
dd−push−prs
dd−push−prt
dd−pp−rsd
dd−pp−prs
dd−pp−prt
dd−basic
power−iter

(d) twitter run time

0 10 20 30 40
0

5

10

15

20

25

30

35

40

no. of threads

sc
al

ab
ili

ty
scalability vs. no. of threads

dd−push
dd−push−prs
dd−push−prt
dd−pp−rsd
dd−pp−prs
dd−pp−prt
dd−basic
power−iter
ideal

(e) twitter scalability

0 10 20 30 40
0

5

10

15

20

25

no. of threads

sp
ee

du
p

speedup vs. no. of threads

dd−push
dd−push−prs
dd−push−prt
dd−pp−rsd
dd−pp−prs
dd−pp−prt
dd−basic
power−iter

(f) twitter speedup

Figure 1. Runtime, scalability and speedup on pld and twitter graphs. Our data-
driven, push-based PageRank achieves the best speedup.

pld sd1 twitter friendster
threads 1 40 1 40 1 40 1 40

dd-push 134 133 282 273 393 417 476 581
dd-push-prs 330 319 758 740 888 850 1076 1069
dd-push-prt 246 244 538 535 395 418 504 619
dd-pp-rsd 131 130 279 271 386 410 473 540
dd-pp-prs 311 303 712 716 963 835 1239 1212
dd-pp-prt 138 136 289 286 394 419 489 611
dd-basic 655 536 1029 896 1629 1526 1482 1356
power-iter 2606 2606 6716 6716 4297 4297 3104 3104

Table 4. The number of completed tasks (unit: 106)

when the node is updated. It is more understandable, though, that the push-
only version outperforms all others. The pushing of residual is equivalent to the
computation of PageRank deltas, thus, the pull can be eliminated, with no extra
cost. This both reduces the number of edges inspected for every node, from in
and out to just out, and reduces the total computation (instructions). Serially, a
deterministic scheduler processes the same nodes, thus it does not save on total
number of tasks, as can be seen in Table 4 rows for dd-push and dd-pp-rsd. The
variation in those rows is due to the variation in scheduling order, especially at
higher thread counts, though the variation is relatively minor.

In Table 4, all reported numbers include all tasks (nodes) considered to make
scheduling decisions. For *-prt methods, this includes the nodes which are dupli-

GraphLab Galois
Threads sync async-fifo async-qfifo async-sweep async-prt power-iter dd-basic dd-pp-prt dd-push

40 478 secs. 500 secs. 788 secs. 4,186 secs. > 4 hrs. 132 secs. 62 secs. 58 secs. 17 secs.
32 496 secs. 580 secs. 804 secs. 5,162 secs. > 4 hrs. 155 secs. 82 secs. 67 secs. 22 secs.
16 594 secs. 618 secs. 970 secs. 9,156 secs. > 4 hrs. 299 secs. 140 secs. 118 secs. 36 secs.
8 845 secs. 898 secs. 1,292 secs. > 4 hrs. > 4 hrs. 510 secs. 269 secs. 193 secs. 53 secs.
1 3,332 secs. 5,194 secs. 5,098 secs. > 4 hrs. > 4 hrs. 3,650 secs. 2,004 secs. 1,415 secs. 355 secs.

Table 5. Runtime of different PageRank implementations on pld dataset

cates in the worklist. For *-prs methods, this includes each round’s examination
of all the nodes in the worklist to pick the priority threshold. Priority scheduling
favoring priority order, *-prt, shows the high cost of duplicate items in the work-
list. This priority scheduler must insert duplicate tasks every time a node moves
to a new priority bin. This means that many tasks are useless, they discover as
their first action that there is nothing to do and complete. Figure 1 shows that
this has a distinct time cost. Although filtering out duplicates is not expensive,
the total work doing so is significant. Priority scheduling favoring set semantics,
*-prs, also must examine a significant number of nodes to determine which tasks
to pick at each scheduling round. We observe that the total number of nodes
in the worklist decreases rapidly, making the working set after several rounds
significantly smaller than the entire graph. This boost in locality helps offset the
extra data accesses.

It is interesting to see that optimizing for cache behavior (pull-based) may not
always be as effective as optimizing for pushing maximum information quickly
(push-based). The push-only PageRank (dd-push-*) is entirely read-write ac-
cess, while the pull-only version (dd-basic) does one write per node processed.
In general, read-mostly access patterns are significantly more cache and coher-
ence friendly. From this perspective, the pull-push versions, dd-pp-*, should be
worst as they have the read set of the pull versions and the write set of the
push versions. The extra writes are not just an alternate implementation of the
PageRank update, but rather influence the scheduling of tasks. The extra writes
weigh nodes, allowing nodes to only be processed when profitable. This improved
scheduling makes up for the increased write load. Given the scheduling benefits
of the residual push, it is easy to see that the push-only version is superior to
the pull-push version as it reduces the memory load and work per iteration. We
do note that when looking at the self-relative scalability of the implementations,
the read-mostly algorithms, while slower, have better scalability than the push
and pull-push variants.

Third party comparison. Table 5 shows a comparison between our data-
driven PageRank algorithms (implemented using Galois) and GraphLab’s PageR-
ank implementations when varying the scheduling on pld dataset. GraphLab
supports different schedulers, though we find the simple synchronous one the
best. We note that the GraphLab’s asynchronous method refers to a Gauss–
Seidel style solver, which still is a bulk-synchronous, topology-driven approach.
The power-iter version (in Galois) is actually a classic synchronous implemen-
tation in this sense, but still notably faster. While GraphLab’s topology-driven
synchronous implementation has similar single threaded performance to the Ga-

lois topology-driven synchronous implementation, power-iter scales much better
than GraphLab. Also, all the data-driven implementations (dd-*) are much faster
than GraphLab’s PageRank implementations. We see that, using 40 threads, the
fastest GraphLab’s method takes 478 seconds whereas our push-based PageRank
takes 17 seconds.

7 Discussion

Priority scheduling needs some algorithmic margin to be competitive as it is
more costly. While it is not surprising that priority scheduling is slower than sim-
ple scalable scheduling, this has some important consequences. First, the ben-
efit is dependent on both algorithmic factors and input characteristics. When
scheduling changes the asymptotic complexity of an algorithm, there can be
huge margins available. In PageRank, there is a theoretical margin available,
but it is relatively small. This limits the extra computation that can be spent on
scheduling overhead without hurting performance. Secondly, the margin avail-
able depends on input characteristics. For many analytic algorithms, scheduling
increases in importance as the diameter of the graph increases. Since PageRank
is often run on power-law style graphs with low diameter, we expect a small
margin available from priority scheduling.

Good priority schedulers can scale competitively with general purpose sched-
ulers. We observe that multiple priority scheduler implementations scale well.
We implement two very different styles of priority schedulers which pick differ-
ent points in the design and feature space. This is encouraging as it leads us
to believe that such richer semantic building blocks can be used by algorithm
designers. PageRank updates priorities often, a use case which is hard to support
efficiently and scalably. Even many high-performance, serial priority queues do
not support this operation. Constructing a concurrent, scalable priority sched-
uler which maintains set semantics by adjusting priorities for existing items in
the scheduler is an open question. The reason is simply one of global knowl-
edge. Knowing whether to insert an item or whether it is already scheduled and
thus only needs its priority adjusted requires global knowledge of the system.
Maintaining and updating global knowledge concurrently in a NUMA system is
rarely scalable. For scalability, practical implementations will contain multiple
queues, meaning that not only does one need to track whether a task is scheduled,
but on which queue the task is scheduled. The scheduler we produced for *-prs
stores set semantics information by marking nodes in the graph and periodically
rechecks priority. This essentially introduces latency between updating a priority
and having the scheduler see the new priority. The amount of latency depends
on how many iterations proceed before rechecking. This number determines the
overhead of the scheduler.

8 Conclusions

Although PageRank is a simple graph analytic algorithm, there are many
interesting implementation details one needs to consider to achieve a high-
performance implementation. We show that data-driven implementations are

significantly faster than traditional power iteration methods. PageRank has a
simple vertex update equation. However, this update can be mapped to the
graph in several ways, changing how and when information flows through the
graph, which vary significantly in performance. Within this space, one can also
profitably consider the order in which updates occur to maximize convergence
speed. While we investigate these implementation variants for PageRank, seeing
performance improvements of 28x over standard power iterations, these consid-
erations can apply to many other convergence-based graph analytic algorithms.

Acknowledgments. This research was supported by NSF grants CCF-1117055 and

CCF-1320746 to ID, and by NSF grants CNS-1111766 and XPS-1337281 to KP.

References

1. Andersen, R., Chung, F., Lang, K.: Local graph partitioning using PageRank vec-
tors. FOCS pp. 475–486 (2006)

2. Bengio, Y., Delalleau, O., Le Roux, N.: Label Propagation and Quadratic Criterion.
MIT Press (2006)

3. Berkhin, P.: A survey on PageRank computing. Internet Mathematics 2, 73–120
(2005)

4. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
Computer Networks and ISDN Systems 30(1-7), 107–117 (1998)

5. Gleich, D.F., Zhukov, L., Berkhin, P.: Fast parallel PageRank: A linear system
approach. Tech. Rep. YRL-2004-038, Yahoo! Research Labs (2004)

6. Jeh, G., Widom, J.: Scaling personalized web search. WWW pp. 271–279 (2003)
7. Lenharth, A., Nguyen, D., Pingali, K.: Concurrent priority queues are not good

priority schedulers. In: Euro-Par 2015 Parallel Processing (2015)
8. Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., Hellerstein, J.M.:

Distributed graphlab: A framework for machine learning and data mining in the
cloud. VLDB Endowment pp. 716–727 (2012)

9. McSherry, F.: A uniform approach to accelerated PageRank computation. WWW
pp. 575–582 (2005)

10. Nguyen, D., Lenharth, A., Pingali, K.: A lightweight infrastructure for graph an-
alytics. SOSP pp. 456–471 (2013)

11. Nguyen, D., Pingali, K.: Synthesizing concurrent schedulers for irregular algo-
rithms. ASPLOS pp. 333–344 (2011)

12. Pingali, K., Nguyen, D., Kulkarni, M., Burtscher, M., Hassaan, M.A., Kaleem, R.,
Lee, T.H., Lenharth, A., Manevich, R., Mndez-Lojo, M., Prountzos, D., Sui, X.:
The Tao of parallelism in algorithms. PLDI pp. 12–25 (2011)

13. Shun, J., Blelloch, G.E.: Ligra: A lightweight graph processing framework for
shared memory. PPoPP pp. 135–146 (2013)

14. Whang, J.J., Gleich, D., Dhillon, I.S.: Overlapping community detection using seed
set expansion. CIKM pp. 2099–2108 (2013)

15. Zhang, Y., Gao, Q., Gao, L., Wang, C.: Priter: A distributed framework for pri-
oritizing iterative computations. IEEE Transactions on Parallel and Distributed
Systems 24(9), 1884–1893 (2013)

16. Zhang, Y., Gao, Q., Gao, L., Wang, C.: Maiter: An asynchronous graph processing
framework for delta-based accumulative iterative computation. IEEE Transactions
on Parallel and Distributed Systems 25(8), 2091–2100 (2014)

