
Algorithms 2009, 2, 1031-1044; doi:10.3390/a2031031

OPEN ACCESS

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms
Article

Graph Compression by BFS
Alberto Apostolico 1,2 and Guido Drovandi 3,4,?

1 College of Computing, Georgia Institute of Technology, 801 Atlantic Drive, Atlanta, GA 30332, USA;
E-Mail: axa@dei.unipd.it (A.A.)

2 Dipartimento di Ingegneria dell’Informazione, Università di Padova, Via Gradenigo 6/A, I-35131
Padova, Italy

3 Dipartimento di Informatica e Automazione, Università di Roma Tre, Via della Vasca Navale 79,
I-00146 Roma, Italy

4 Istituto di Analisi dei Sistemi ed Informatica (IASI), CNR, Viale Manzoni 30, I-00185 Roma, Italy

? Author to whom correspondence should be addressed; E-Mail: drovandi@dia.uniroma3.it

Received: 30 June 2009; in revised form: 20 August 2009 / Accepted: 21 August 2009 /
Published: 25 August 2009

Abstract: The Web Graph is a large-scale graph that does not fit in main memory, so that
lossless compression methods have been proposed for it. This paper introduces a compression
scheme that combines efficient storage with fast retrieval for the information in a node. The
scheme exploits the properties of the Web Graph without assuming an ordering of the URLs,
so that it may be applied to more general graphs. Tests on some datasets of use achieve space
savings of about 10% over existing methods.

Keywords: data compression; web graph; graph compression; breadth first search;
universal codes

1. Introduction

In recent years, many applications have been developed for retrieving information over the World
Wide Web, and analyzing the structure of the underlying Web Graph, which contains currently more than
1 trillion different URLs (http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html). This
large-scale graph has too many links to be stored in the main memory which forces several random
seeks to a disk. Since disk access is (by five orders of magnitude) slower than main memory access,

Algorithms 2009, 2 1032

this leads to unacceptable retrieval times. To mitigate this problem, several compression techniques
have been proposed for large graphs, aimed at reducing the number of bits per link required in graph
representation [1–7].

In this paper, we focus on the efficient storage of and rapid access to compressed graphs. In contrast to
other techniques that make use of lexicographic ordering of URLs, and thus are specifically tailored for
the Web Graph, however, the scheme presented here does not need to refer to the URLs and therefore may
be applied to graphs of more general nature. The specific aim of our method is to produce a compressed
graph supporting queries of the kind:

• For two input pages X and Y, does X have a hyperlink to page Y?

• For input page X, list the neighbours of X

In summary, our method produces a compressed Web Graph featuring high compression ratio, short
retrieval time of the adjacency list of a node, and fast testing of whether or not two pages share a hy-
perlink. The paper is organized as follows. Section 2 stipulates some notation and reviews previous
work. Our method is presented in Section 3. Section 4 outlines the structure of a new universal code
inspired by our method, to be further analyzed in a forthcoming paper. Finally, Section 5 documents the
performance achieved.

2. Preliminaries

The Web Graph over some subset of URLs or pages is a directed graph in which each node u is an
URL in the subset and an edge or link is directed from u to v whenever there is a hyperlink from u to v.
Formally, the Web Graph is a directed graph G = (V,E), where V is the set of URL identifiers or indices
and E is the set of links between them. For any node v ∈ V , Av = {u1, . . . , uk|ui ∈ V } will denote the
adjacency list of v. We will assume that the identifiers in each list appear sorted in some linear order.

From the standpoint of compression, one convenient way to assign indices is to sort the URLs lex-
icographically and then to give each page its corresponding rank in the ordering. This induces two
properties, namely:

• Locality: For a node with index i, most of its neighbours may be expected to have an index close
to i; and

• Similarity: Pages with a lexicographically close index (for example, pages residing on a same host)
may be expected to have many neighbours in common (that is, they are likely to reference each
other).

These properties induce that the gap between the index i of a page and the index j of one of its neigh-
bours is typically small. The approach followed in this paper is based on ordering nodes based on the
Breadth First Search (BFS) of the graph instead of the lexicographic order, while still retaining these fea-
tures. In fact, Figure 1 (top) shows the corresponding distribution of the gaps between neighbours. This
distribution follows a power law similar to the node degree distribution displayed in Figure 1 (bottom).

Algorithms 2009, 2 1033

Figure 1. The distribution of gaps between neighboring nodes (top) and (bottom) of node
degrees in the dataset “in-2004” as gathered by Boldi and Vigna [3] using UbiCrawler [8].

10
0

10
1

10
2

10
3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

The problem of graph compression has been approached by several authors over the years, perhaps
beginning with the paper [9]. Among the most recent works, Feder and Motwani [10] looked at graph
compression from the algorithmic standpoint, with the goal of carrying out algorithms on compressed
versions of a graph. Among the earliest works specifically devoted to web graph compression one finds
papers by Adler and Mitzenmacher [1], and Suel and Yuan [6]. For quite some time the best compression
performance was that achieved by the WebGraph algorithm by Boldi and Vigna (BV in the following)
[3], which uses two parameters to compress the Web Graph G = (V, E): the refer range W and the
maximum reference count R. For each node vi ∈ V BV represent a modified version of Avi

obtained
from an adjacency list Avj

of another node vj ∈ V (i − W ≤ j < i) called the reference list (the
value i − j is called reference number). The representation is composed of a sequence of bits (copy
list), which tells if a neighbour of vj is also a neighbour of vi, and the description of the extra nodes
Avi

\ Avj
. Extra nodes are encoded using gaps that is, if Avi

\ Avj
= {a1, . . . , al} the representation

is {a1, a2 − a1 − 1, . . . , ai − ai−1 − 1, . . . , al − al−1 − 1}. Table 1 reproduces an example from [3] of
representation using copy list.

Algorithms 2009, 2 1034

Table 1. The Boldi and Vigna representation using copy lists [3].

Node Degree Ref. N. Copy List Extra Nodes
.
15 11 0 13, 15, 16, 17, 18, 19, 23, 24, 203
16 10 1 011100110 22, 316, 317, 3041
.

The parameter R is the maximum size of a reference chain. In fact, BV do not consider all the nodes
vj , with i − W ≤ j < i, to encode vi, but only those that produce a chain not longer than R. BV
also developed ζ codes [11], a family of universal codes used to compress power law distributions with
small exponent.

Claude and Navarro (CN) [4] proposed a modified version of Re-Pair [12] to compress the Web
Graph. Re-Pair is an algorithm that builds a generative grammar for a string by hierarchically grouping
frequent pairs into variables, frequent variable pairs into more variables and so on. Along these lines,
CN essentially applies Re-Pair to the string that results from concatenation of the adjacency lists of the
vertices. The data plots presented in [4] display that their method achieved a compression comparable to
BV (at more than 4 bits per link) but the retrieval time of the neighbours of a node is faster.

Buehrer and Chellapilla [7] (BC) proposed a compression based on a method presented in [10] by
Feder and Motwani; They search for recurring dense bipartite graphs (communities) and for each occur-
rence found they generate a new node, called virtual node, that replaces the intra-links of the community
(see Figure2). In [13] Karande et al. showed that this method has competitive performances over well
know algorithms including PageRank [14, 15].

Figure 2. The method by Buehrer and Chellapilla [7] compresses a complete bipartite graph
(left) by introducing a virtual node (right).

In [2], Asano et al. obtained better compression result than BV and BC but their technique does not
permit a comparably fast access to the neighbours of a node. They compressed the intra-host links (that
is, links between pages residing in the same host) by identifying through local indices six different types
of blocks in the adjacency matrix, respectively dubbed: isolated 1-element, horizontal block, vertical
block, L-shaped block, rectangular block, and diagonal block. Each block is represented by its first
element, its type, and its size. The inter-host links are compressed by the same method used for the
intra-host links, through resort to ad-hoc “new local indices” (refer to [2] for details).

Algorithms 2009, 2 1035

3. Encoding by BFS

Our compression method is based on the topological structure of the Web Graph rather than on the
underlying URLs. Instead of assigning indices to nodes based on the lexicographical ordering of their
URLs, we perform a breadth-first traversal of G and index each node according to the order in which it
is expanded. We refer to this process, and the compression it induces, as Phase 1. Following this, we
compress in Phase 2 all of the remaining links.

During the traversal of Phase 1, when expanding a node vi ∈ V , we assign consecutive integer indices
to its ki (not yet expanded) neighbours, and also store the value of ki. Once the traversal is over, all the
links that belong to the breadth-first tree are encoded in the sequence {k1, k2, . . . , k|V |}, which we call
the traversal list. In our experiments, the traversal allows to remove almost |V |− 1 links from the graph.
Figure 3 shows an example of Phase 1: the graph with the indices assigned to nodes is displayed in
Figure 4(a), while Figure 4(b) shows the links remaining after the BFS and, below them, the traversal list.
The compression ratio achieved by the present method is affected by the indices assignment of the BFS.
In [16], Chierichetti et al. showed that finding an optimal assignment that minimizes

∑
(vi,vj)∈E log |i−j|

is NP-hard.

Figure 3. Illustrating Phase 1.

2

5

1

0

3

4

(a) Indices assigned to the nodes.

2

5

1

0

3

4

T={2,2,1,0,0,0}
(b) Remaining links after BFS and the
traversal list T .

We now separately compress consecutive chunks of l nodes, where l is a prudently chosen value for
what we call the compression level. Each compressed chunk is prefixed with the items of the traversal
list that pertain to the nodes in the chunk: that is, assuming that the chunk C consists of the nodes vi,
. . ., vi+l−1, then the compressed representation of C is prefixed by the sequence {ki, . . . , ki+l−1}.

In Phase 2, we encode the adjacency list Ai of each node vi ∈ V in a chunk C in increasing order. Each
encoding consists of the integer gap between adjacent elements in the list and a type indicator chosen in
the set {α, β, χ, φ} needed in decoding. With Aj

i denoting the jth element in Ai, we distinguish three
main cases as follows.

Algorithms 2009, 2 1036

1. Aj
i−1 ≤ Aj−1

i < Aj
i : the code is the string φ · (Aj

i − Aj−1
i − 1)

2. Aj−1
i < Aj

i−1 ≤ Aj
i : the code is the string β · (Aj

i − Aj
i−1)

3. Aj−1
i < Aj

i < Aj
i−1: this splits in two subcases, namely,

(a) if Aj
i − Aj−1

i − 1 ≤ Aj
i−1 − Aj

i − 1 then the code is the string α · (Aj
i − Aj−1

i − 1)

(b) otherwise the code is the string χ · (Aj
i−1 − Aj

i − 1)

The types α and φ encode the gap with respect to the previous element in the list (Aj−1
i), while β and χ

are given with respect to the element in the same position of the adjacency list of the
previous node (Aj

i−1).
When Aj

i−1 does not exist it is replaced by Aj
k, where k (k < i− 1 and vk ∈ C) is the closest index to

i for which the degree of vk is not smaller than j, or by a φ-type code in the event that even such a node
does not exist. In the following, we will refer to an encoding by its type. Table 3 displays the encoding
that results under these conventions for the adjacency list of Table 2.

Table 2. An adjacency list. It is assumed that the node vi is the first node of a chunk.

Node Degree Links
.
i 8 13 15 16 17 20 21 23 24

i + 1 9 13 15 16 17 19 20 25 31 32
i + 2 0
i + 3 2 15 16
.

Table 3. Encoding of the adjacency list of Table 2.

Node Degree Links
.
i 8 φ 13 φ 1 φ 0 φ 0 φ 2 φ 0 φ 1 φ 0

i + 1 9 β 0 β 0 β 0 β 0 χ 0 α 0 β 2 φ 5 φ 0
i + 2 0
i + 3 2 β 2 α 0
.

As mentioned, our encoding achieves that two nodes connected by a link are likely to be assigned
close index values. Moreover, since two adjacent nodes in the Web Graph typically share many neighbors
then the adjacency lists will feature similar consecutive lines. This leads to the emergence of four types
of “redundancies” the exploitation of which is described, with the help of Table 4, as follows.

Algorithms 2009, 2 1037

1. A run of identical lines is encoded by assigning a multiplier to the first line in the sequence;

2. Since there are intervals of constant node degrees (such as, for example, the block formed by two
consecutive “9” in the table) then the degrees of consecutive nodes are gap-encoded;

3. Whenever for some suitably fixed Lmin there is a sequence of at least Lmin identical elements (such
as the block of φ 1’s in the table), then this sequence is run-length encoded;

4. Finally, a box of identical rows (such as the biggest block in the table) exceeding a pre-set threshold
size Amin is run-length encoded.

Table 4. Exploiting redundancies in adjacency lists.

Degree Links
.
0
9 β 7 φ 1 φ 1 φ 1 φ 0 φ 1 φ 1 φ 1 φ 1
9 β 0 β 1 β 0 β 0 β 0 β 0 β 0 β 0 β 2
10 β 0 β 1 β 0 β 0 β 0 β 0 β 0 β 0 β 1 φ 903
10 β 0 β 1 β 0 β 0 β 0 β 0 β 0 β 0 β 223 φ 900
10 β 0 β 1 β 0 β 0 β 0 β 0 β 0 β 0 β 1 α 0

10 β 0 β 1 β 0 β 0 β 0 β 0 β 0 β 0 β 1 β 0
10 β 0 β 1 β 0 β 0 β 0 β 0 β 0 β 0 β 1 β 0
10 β 0 β 1 β 0 β 0 β 0 β 0 β 0 β 0 β 1 β 0
10 β 0 β 1 β 0 β 0 β 0 β 0 β 0 β 0 β 1 β 0

10 β 0 β 1 β 0 β 0 β 0 β 0 β 0 β 0 α 76 α 232
9 β 0 β 1 β 0 β 0 β 0 β 0 β 0 β 0 β 0

.

We exploit the redundancies according to the order in which they are listed above, and if there is more
than one box beginning at the same entry we choose the largest one.

In order to signal the third or fourth redundancy to the decoder we introduce a special charac-
ter Σ, to be followed by a flag ΣF denoting whether the redundancy starting with this element is of
type 3 (ΣF = 2), 4 (ΣF = 3), or both (ΣF = 1).

For the second redundancy in our example we write “φ Σ 2 1 1”, where φ identifies a φ-type encoding,
2 is the value of ΣF , the first 1 is the gap, and the second 1 is the number of times that the element appears
minus Lmin (2 in this example).

To represent the third redundancy both width and height of the box need encoding, thus in our example
we can write “β Σ 3 0 7 5”, where β is the code type, 3 is the value of ΣF , 0 is the gap, 7 is the width
minus 1, and 5 is the height minus 2.

When a third and fourth type redundancy originate at the same entry, both are encoded in the format
“type Σ 1 gap l wb hb”, where the 1 is the ΣF , l is the number of identical elements on the same line
starting from this element, and w and h are, respectively, the width and the height of the box.

Algorithms 2009, 2 1038

Table 5 shows the encoding resulting from this treatment.

Table 5. An example of adjacency list encoding exploiting redundancies.

Lines Degree Links
.
0 0
0 9 β 7 φ Σ 2 1 1 φ 0 φ Σ 2 1 2
0 0 β Σ 3 0 7 5 β 1 β Σ 2 0 4 β 2
0 1 β 1 φ 903
0 0 β 223 φ 900
0 0 β 1 α 0
3 0 β 1 β 0
0 0 α 76 α 232
0 -1 β 0

.

We observe that we do not need to explicitly write φ characters, which are implicit in Aj
i−1 ≤ Aj−1

i , a
condition easily testable at the decoder. We encode the characters α, β and χ as well as ΣF by Huffman-
code. Gaps, the special character Σ (Σ is an integer that does not appear as a gap) and other integers are
encoded using the ad-hoc π-code described in the next section. When a gap g could be negative (as with
degrees), then we encode 2g if g is positive, and 2|g| − 1 when g < 0.

4. A Universal Code

In this section we briefly introduce π-codes, a new family of universal codes for the integers. This
family is better suited than the δ- and ζ- codes [11, 17] to the cases of an entropy characterized by a
power law distribution with an exponent close to 1.

Table 6. The initial segment of πk-codes (0 ≤ k ≤ 3) versus δ. Note that π0 = γ = ζ1 and
π1 ≡ ζ2.

n π0 = γ π1 ≡ ζ2 π2 π3 δ

1 1 11 111 1111 1

2 010 100 1100 11100 0100

3 011 101 1101 11101 0101

4 00100 01100 10100 110100 01100

5 00101 01101 10101 110101 01101

6 00110 01110 10110 110110 01110

7 00111 01111 10111 110111 01111

8 0001000 010000 100000 1100000 00100000

Algorithms 2009, 2 1039

Let n be a positive integer, b its binary representation and h = 1 + blog2(n)c. Having fixed a positive
integer k, we represent n using k+h+d h

2k e−1 bits. Specifically, say h = 2kl−c (l > 0 and 0 ≤ c < 2k),
then the πk-encoding of n is produced by writing the unary representation of l, which is followed by the
k bits needed to encode c, and finally by the rightmost h− 1 bits of b.

For instance, the π2-encoding of 21 is 01 11 0101: since the binary representation b of 21 is 10101

and we can write h = 22 · 2− 3 = 5, then the prefix of the encoding is the unary representation of l = 2,
the 2 bits that follow indicate the value of c = 3 and the suffix is formed by the h − 1 least significant
digits of b. In the following we use the approximation HP = EP (log2 n) described in [17], where Hp is
the entropy of a distribution with probability P . The expected length for n is:

EP (Lπ) ≤ EP

(
k + h +

⌈
h

2k

⌉
− 1

)

≤ 1 + k +
1

2k
+

(
1 +

1

2k

)
EP (log2 n)

≤ 1 + k +
1

2k
+

(
1 +

1

2k

)
HP

A code is universal [17] if the expected codeword length is bounded in the interval 0 < HP < ∞.
Each π-code is universal according to:

EP (Lπ)

max{1, HP} ≤ k + 2

(
1 +

1

2k

)

and, for k →∞, it is also asymptotically optimal [17], that is:

lim
k→∞

lim
HP→∞

EP (Lπ)

max{1, HP} = lim
k→∞

(
1 +

1

2k

)
= 1

In the context of Web Graph compression we use a modified version of π-codes in which 0 is encoded
by 1 and any other positive integer n is encoded with a 0 followed by the π-code of n.

5. Experiments

Table 8 reports sizes expressed in bits per link of our compressed graphs. We used datasets (Datasets
and WebGraph can be downloaded from http://webgraph.dsi.unimi.it/) collected by Boldi and Vigna [3]
(salient statistics in Table 7). Many of these datasets were gathered using UbiCrawler [8] by different
laboratories.

With a compression level l = 104 the present method yielded consistently better results than BV [3],
BC [7] and Asano et al. [2]. The BV highest compression scores (R = ∞) are comparable to those we
obtain at level 8, while those for general usage (R = 3) are comparable to our level 4. Table 8 displays
also the results of the BV method using an ordering of the URLs induced by the BFS. This indicates that
BV does not take advantage.

Algorithms 2009, 2 1040

Table 7. Statistics of datasets used for tests.

Nodes Links Avg Degree Max Degree
cnr-2000 325,557 3,216,152 9.88 2716
in-2004 1,382,908 16,917,053 12.23 7753
eu-2005 862,664 19,235,140 22.30 6985
indochina-2004 7,414,866 194,109,311 26.18 6985
uk-2002 18,520,487 298,113,762 16.10 2450
arabic-2005 22,744,080 639,999,458 28.14 9905

Table 8. Compressed sizes in bits per link.

BV [3]
This Paper

R = 3 R = ∞ BC [7] Asano et al. [2]

BFS BFS l = 104 l = 8 l = 4

cnr-2000 3.92 3.56 3.23 2.84 - 1.99 1.87 2.64 3.33
in-2004 3.05 2.82 2.35 2.17 - 1.71 1.43 2.19 2.85
eu-2005 4.83 5.17 4.05 4.38 2.90 2.78 2.71 3.48 4.20
indochina-2004 2.03 2.06 1.46 1.47 - - 1.00 1.57 2.09
uk-2002 3.28 3.00 2.46 2.22 1.95 - 1.83 2.62 3.33
arabic-2005 2.58 2.81 1.87 1.99 1.81 - 1.65 2.30 2.85

To randomly access the graph we need to store the offset of the first element of each chunk, but the
results shown here do not account for these offsets. In fact, we do need N/l offsets. BV use l = 1 in
their tests, which are slowed down by about 50% setting l = 4. In BC an offset per node is required.
Asano et al. do not provide information about offsets. In order to recover the links of the BFS tree,
we also need to store for the first node u of each chunk the smallest index of a node v such that (u, v)

belongs to the BFS tree. In total, this charges an extra (b + k)/l bits per node, where b bits are charged
by the offset and k by the index of the node. With r the bits per link and d the average degree of a
graph, b requires at most 2+ log2(lrd) bits and k at most 2+ log2 l bits by Elias-Fano encoding [18, 19].
Using the same encoding, BC and BV require 2 + log2(rd) bits per node to represent any offset. Since
(4+ log2(l

2rd))/l < 2+ log2(rd), then we need less memory to store this information. Currently, in our
implementation we use 64 bits per node.

Table 9 displays average times to retrieve adjacencies of 2 · 107 random nodes. The tests run on an
Intel Core 2 Duo T7300 2.00 GHz with 2 GB main memory and 4 MB L2-Cache under Linux 2.6.27.
For the tests, we use the original Java implementation of BV (running under java version 1.6.0) and a
C implementation of our method compiled with gcc (version 4.3.2 with -O3 option). The performance
of Java and C are comparable [20], but we turned off the garbage collector anyway to speed-up. Table
9 shows that the BV high compression mode is slower than our method, while the BV general usage

Algorithms 2009, 2 1041

version (R = 3) performs with comparable speed. However, settling for l = 4 our method becomes
faster.

Table 9. Average times to retrieve the adjacency list of a node.

BV [3] This Paper
R = 3 R = ∞ l = 8 l = 4

cnr-2000 1.66 µs 1.22 ms 1.40 µs 0.95 µs
in-2004 1.89 µs 0.65 ms 1.55 µs 1.13 µs
eu-2005 2.58 µs 2.35 ms 3.16 µs 2.09 µs
indochina-2004 2.31 µs 0.93 ms 2.42 µs 1.72 µs
uk-2002 2.35 µs 0.20 ms 2.16 µs 1.52 µs
arabic-2005 2.80 µs 1.15 ms 3.09 µs 2.11 µs

Figure 4. Algorithm to check if the directed link (vi, vj) exists.

Algorithm isNeighbour(vi,vj)
vf := the first node of chunk C (vi ∈ C)
a :=

∑f−1
h←1 kh + 1

for h ← f to i− 1

a ← a + kh

end for
if a ≤ j < a + ki then return true
if j ≥ a + ki then return false
Ai ← the adjacency list of vi

if vj ∈ Ai then return true
return false

Table 10. Average times to test adjacency between pairs of random nodes.

This Paper
l = 8 l = 4

cnr-2000 0.86 µs 0.59 µs
in-2004 0.95 µs 0.70 µs
eu-2005 1.73 µs 1.20 µs
indochina-2004 1.55 µs 1.11 µs
uk-2002 1.30 µs 0.95 µs
arabic-2005 1.81 µs 1.23 µs

Algorithms 2009, 2 1042

By virtue of the underlying BFS, we can implement a fast query to check whether or not a link (vi, vj)

exists. In fact, we know that a node vi has ki links that belong to the BFS tree, say, to va, . . ., va+ki−1.
We also know that vi does not have any link with a node vb where b ≥ a + ki, so we need to generate
the adjacency list of vi only if j < a. Figure 4 displays the pseudocode of this query. Table 10 shows
average times to test the connectivity of 2 ·107 pairs of random nodes. The average time is less than 60%

of the retrieval time.
Finally, Figure 5 presents the actual main memory (top) respectively required by BV and our method,

and the space-time tradeoff (bottom). As said, we do not compress the offsets. The space requirement
of our compression level 8 is 80% of BV at R = 3.

Figure 5. Main memory usage (top) by BV and the present method and the space-time
tradeoff (bottom).

0

100

200

300

M
ai

n
M

em
or

y
(M

B
)

BV (R=3)

BV (R=∞)

Our (l=4)

Our (l=8)

cnr−2000 in−2004 eu−2005 indochina−2004 uk−2002 arabic−2005

0 50 100 150 200 250 300
0.5

1

1.5

2

2.5

3

3.5

Main Memory (MB)

T
im

e
(µ

s) BV (R=3)
Our (l=4)
Our (l=8)
cnr−2000
in−2004
eu−2005
indochina−2004
uk−2002
arabic−2005

6. Conclusion

We have proposed a new way to compress the Web Graph and other graphs of comparable structure.
In fact, we assume no a priori knowledge of the graph, and in contrast with previous works based on
lexicographic ordering of URLs we use a traversal to order nodes. The size of the compressed files is

Algorithms 2009, 2 1043

smaller of that of Asano et al. [2], considered the current state of the art. The average retrieval time is
comparable to that of BV [3]. We also introduced a fast query to check whether two nodes are connected,
without need to generate an entire adjacency list. Future work shall extend the set of primitive queries
for compressed graphs.

References and Notes

1. Adler, M.; Mitzenmacher, M. Towards compressing web graphs. In Proceedings of the IEEE Data
Compression Conference, Snowbird, Utah, USA, March 27-29, 2001; pp. 203-212.

2. Asano, Y.; Miyawaki, Y.; Nishizeki, T. Efficient compression of web graphs. In Proceedings of the
14th annual international conference on Computing and Combinatorics, Dalian, China, June 27 -
29, 2008; Springer-Verlag: Berlin, Heidelberg, Germany, 2008, pp. 1-11.

3. Boldi, P.; Vigna, S. The web graph framework I: Compression techniques. In Proceedings of the
Thirteenth International World Wide Web Conference, New York, NY, USA, 2004; ACM Press:
Manhattan, USA, 2004, pp. 595-601.

4. Claude, F.; Navarro, G. A fast and compact web graph representation. In Proceedings of 14th
International Symposium on String Processing and Information Retrieval, Santiago, Chile, October
29-31, 2007; pp. 105-116.

5. Randall, K.H.; Stata, R.; Wiener, J.L.; Wickremesinghe, R.G. The link database: fast access to
graphs of the web. In Proceedings of the Data Compression Conference (DCC ’02), Snowbird, UT,
USA, April 2-4, 2002; IEEE Computer Society: Washington, DC, USA, 2002;, p. 122.

6. Suel, T.; Yuan, J. Compressing the graph structure of the web. In Proceedings of the IEEE Data
Compression Conference, Snowbird, Utah, USA, March 27-29, 2001; pp. 213-222.

7. Buehrer, G.; Chellapilla, K. A scalable pattern mining approach to web graph compression with
communities. In Proceedings of the international conference on Web search and web data mining,
Palo Alto, CA, USA, February 11-12, 2008; ACM: New York, NY, USA, 2008; pp. 95-106.

8. Boldi, P.; Codenotti, B.; Santini, M.; Vigna, S. UbiCrawler: a scalable fully distributed web crawler.
Software: Pract. Exp. 2004, 34, 711-726.

9. Turan, G. On the succinct representation of graphs. Discrete Appl. Math. 1984, 8, 289-294.
10. Feder, T.; Motwani, R. Clique partitions, graph compression and speeding-up algorithms.

J. Comput. Syst. Sci. 1995, 51, 261-272.
11. Boldi, P.; Vigna, S. Codes for the world wide web. Internet Math. 2005, 2, 407-429.
12. Larsson, N.J.; Moffat, A. Offline dictionary-based compression. IEEE 2000, 88, 1722-1732.
13. Karande, C.; Chellapilla, K.; Andersen, R. Speeding up algorithms on compressed web graphs.

In Proceedings of the Second ACM International Conference on Web Search and Data Mining,
Barcelona, Spain, February 9-12, 2009; ACM: New York, NY, USA, 2009; pp. 272-281.

14. Brin, S.; Page, L. The anatomy of a large-scale hypertextual web search engine. Comput. Netw.
ISDN Syst. 1998, 30, 107-117.

15. Page, L.; Brin, S.; Motwani, R.; Winograd, T. The pagerank citation ranking: bringing order to the
web; Technical Report 1999-66; Stanford InfoLab, 1999; Previous number = SIDL-WP-1999-0120.

16. Chierichetti, F.; Kumar, R.; Lattanzi, S.; Mitzenmacher, M.; Panconesi, A.; Raghavan, P. On
compressing social networks. In Proceedings of the 15th ACM SIGKDD international conference

Algorithms 2009, 2 1044

on Knowledge discovery and data mining, San Diego, CA, USA, August 15-18, 1999; ACM: New
York, NY, USA, 2009; pp. 219-228.

17. Elias, P. Universal codeword sets and representations of the integers. IEEE Trans. Inf. Theory
1975, 21, 194-203.

18. Elias, P. Efficient storage and retrieval by content and address of static files. J. ACM 1974,
21, 246-260.

19. Fano, R.M. Project MAC. Computer Structures Group Memorandum 61. On the number of bits
required to implement an associative memory; Massachusetts Institute of Technology: Cambridge,
MA, USA, 1971.

20. Lewis, J.; Neumann, U. Performance of java versus C++; Computer Graphics and Immersive
Technology Lab, University of Southern California: Los Angeles, CA, USA, 2003.

c© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland.
This article is an open-access article distributed under the terms and conditions of the Creative Commons
Attribution license (http://creativecommons.org/licenses/by/3.0/).

	Introduction
	Preliminaries
	Encoding by BFS
	A Universal Code
	Experiments
	Conclusion

