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Abstract. Random graph null models have found widespread application in diverse research commu-
nities analyzing network datasets, including social, information, and economic networks, as
well as food webs, protein-protein interactions, and neuronal networks. The most popular
random graph null models, called configuration models, are defined as uniform distribu-
tions over a space of graphs with a fixed degree sequence. Commonly, properties of an
empirical network are compared to properties of an ensemble of graphs from a configura-
tion model in order to quantify whether empirical network properties are meaningful or
whether they are instead a common consequence of the particular degree sequence. In this
work we study the subtle but important decisions underlying the specification of a config-
uration model, and we investigate the role these choices play in graph sampling procedures
and a suite of applications. We place particular emphasis on the importance of specifying
the appropriate graph labeling—stub-labeled or vertex-labeled—under which to consider
a null model, a choice that closely connects the study of random graphs to the study of
random contingency tables. We show that the choice of graph labeling is inconsequential
for studies of simple graphs, but can have a significant impact on analyses of multigraphs
or graphs with self-loops. The importance of these choices is demonstrated through a
series of three in-depth vignettes, analyzing three different network datasets under many
different configuration models and observing substantial differences in study conclusions
under different models. We argue that in each case, only one of the possible configuration
models is appropriate. While our work focuses on undirected static networks, it aims to
guide the study of directed networks, dynamic networks, and all other network contexts
that are suitably studied through the lens of random graph null models.
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I. Introduction. A configuration model is a uniform distribution over graphs
with a specific degree sequence. For researchers studying network data, it is common
to employ a configuration model as a degree-preserving null model that holds fixed
the degree sequence of an empirical graph while randomizing all other structure. In
other domains, researchers study the properties of graph algorithms, dynamical mod-
els, or optimization routines on “realistic” graphs by sampling random graphs from a
configuration model with an empirically relevant degree sequence.

There is a tendency in the literatures of graph mining, machine learning, and
network science to think of and study one configuration model—the configuration
model—without specifying or reflecting upon the defining properties of the space of
graphs over which the uniform distribution is considered. As a consequence, mis-
understandings have developed within a number of domain sciences surrounding the
configuration model, at times because discussions refer to uniform distributions over
subtly but importantly different spaces of graphs. In this paper, we clarify the differ-
ences between eight commonly arising graph spaces and their corresponding uniform
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distributions, aiming to provide an orderly review of and guide to the diverse fields
of study where configuration models have found application.

In some circumstances, differences between particular graph spaces are asymp-
totically small in the limit of large and sparse graphs with restricted degree se-
quences. However, as we will demonstrate, not all differences between graph spaces
are asymptotically small, and perhaps more importantly, a great deal of modern
graph analysis is performed on graphs that are well short of fulfilling these asymp-
totic promises.

We begin by reviewing eight common graph spaces over which one might seek
a uniform distribution. These spaces can be organized according to the answers to
three binary questions, which we describe in section 1.5. We then provide a detailed
overview of the subtleties involved in uniformly sampling from these different spaces
in sections 2 and 3, primarily through correctly specified Markov chains, with brief
discussions of other related graph spaces, including connected, directed, and weighted
graphs.! After establishing formal sampling results we then turn to a series of three
vignettes in section 5 that illustrate the scientific importance of choosing the correct
graph space as a null model. In particular, we argue that the common default choice
of studying configuration models over stub-labeled graphs (where each half-edge is la-
beled) is an inappropriate choice for most analyses of nonsimple graphs. Importantly,
we demonstrate that this choice of null model leads to different conclusions than more
appropriate null models based on vertex-labeled graphs.

l.1. Basic Definitions. Recall the basic definition of a graph as an ordered pair
G = (V,E), consisting of a vertex set V and an edge set £ C V x V. The edge
set E is understood to be a simple set, but if F is a multiset (where a vertex pair
(u,v) can appear several times in E), then the graph is instead called a multigraph.
Depending on the context, a graph or multigraph may allow or disallow the presence
of self-loops (edges of the form (u,u), connecting a vertex to itself). A graph is also
often represented as a |V| x |V| adjacency matriz, such that the (i, j)th entry w;; is
equal to the number of edges between vertices ¢ and j. For undirected graphs, as
considered here, the adjacency matrix is symmetric.

The choices to allow or disallow self-loops or multiedges are the first two to be
made in specifying a configuration model’s graph space. In order to be precise about
the properties of each graph space, we briefly review four definitions. First, a simple
graph is a graph without self-loops or multiedges. Second, there is no established
name in the literature for a graph allowing self-loops but without multiedges, so we
refer to such a graph plainly as a loopy graph. In the literature, multigraphs are
sometimes taken to have self-loops and sometimes not; we adopt the more conven-
tional name multigraph to refer specifically to multigraphs without self-loops, and use
loopy multigraph to refer to a multigraph that allows self-loops (also sometimes called
a pseudograph). See Figure 1(a) for a diagram illustrating the basic relationships
between these graph spaces.

1.2. Vertex- and Stub-Labeled Graph Spaces. A graph G = (V, E) consists of
two sets: a vertex set V and an edge set F. These sets can be unlabeled or labeled,
motivating the following definitions that will be used throughout the paper.

DEFINITION 1.1 (vertex-labeled graph). A vertex-labeled graph is a graph in
which each vertex has a distinct label.

ISee also [27], whose publication followed this work’s submission.
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Fig. | Graph spaces. (a) Nested and overlapping graph spaces, defined by allowing or prohibit-
ing self-loops or multiedges. (b) Two instances of stub matching resulting in the same
vertez-labeled graph but different stub-labeled graphs. (c)—(e) For the degree sequence
{ki} ={2,2,1,1}, the (c) set of graph isomorphism classes, (d) set of vertez-labeled graphs,
and (e) set of stub-labeled graphs, (where the stub labels are delineated by the locations where
they protrude from a vertezx). For the two simple graphs in panel (d), they are both “stub-
isomorphic” to the same number of stub-labeled graphs in panel (e), in particular, to exactly
1, ki! = 4 graphs. However, the sizes of the stub-isomorphism classes differ for graphs with
self-loops or multiedges, illustrating why vertex- and stub-labeled spaces may not be treated
as equivalent. Note that both graphs shown in panel (b) fall in the same row of panel (e).

For vertex-labeled graphs, there is a bijection between graphs and adjacency
matrices, i.e., each vertex-labeled graph can be uniquely identified by its adjacency
matrix, and vice versa. However, in addition to vertices, the two endpoints of each
edge (where they connect to vertices), can also be labeled separately. The case when
these half-edges or “stubs” are labeled motivates the following definition.

DEFINITION 1.2 (stub-labeled graph). A stub-labeled graph is a graph in which
each half-edge (stub) has a distinct label, and thus each edge has a pair of distinct
labels.

Note that a stub-labeled graph also has implicitly labeled vertices, since each
vertex is distinctly labeled by the set of labeled stubs attached to it. However, in
contrast with vertex-labeled graphs, there is no bijection between stub-labeled graphs
and adjacency matrices, i.e., multiple stub-labeled graphs can correspond to the same
adjacency matrix. An wunlabeled graph is a graph in which neither edges nor ver-
tices are labeled. An unlabeled graph can be thought of as an isomorphism class
in a space of labeled graphs, where there exists a set of labeled graphs that all cor-
respond to the same unlabeled graph. Similarly, there exists a set of stub-labeled
graphs which correspond to the same vertex-labeled graph, motivating the following
definition.

DEFINITION 1.3 (stub-isormorphism). A stub-isomorphism equivalence class is
the set of all stub-labeled graphs which, upon removal of stub labels, results in the
same vertex-labeled graph. Equivalently, a stub-isomorphism class is the set of all
stub-labeled graphs which are represented by the same adjacency matrixz. Two graphs
in the same stub-isomorphism class are said to be stub-isomorphic.

For the space of simple graphs with a given degree sequence {k;};cv, where k;
is the degree of vertex i—and only for simple graphs, as we shall see—the number
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of stub-isomorphic graphs corresponding to a given vertex-labeled graph is a con-
stant that depends only on the degree sequence (which is fixed). As a result, each
vertex-labeled graph appears the same number of times in the space of stub-labeled
graphs, and hence the uniform distributions over both spaces are equivalent in most
practical contexts where analyses ignore explicit stub labels. On the other hand,
for nonsimple graphs with loops and/or multiedges, this is not the case, and the
choice of labeling can radically change the space of graphs and, thereby, any result-
ing/downstream/derivative analysis.

We visualize the differently labeled spaces for an example degree sequence, {2,2,
1,1}, in Figure 1(c)—(e). In the vertex-labeled space, half the graphs (3 of 6) have
self-loops and only a third of the graphs (2 of 6) are simple; in the stub-labeled
space, the majority of the graphs (8 of 15) are simple. As we will show in sec-
tion 4, self-loops and multiedges are always more common in vertex-labeled graphs,
and for many degree sequences they are vastly more common. Uniform distributions
over these differently labeled spaces can therefore produce wildly different answers
to straightforward questions. For example, if one asks, “What fraction of graphs
with the given degree sequence form a single connected component?” for this de-
gree sequence, the answer varies considerably—1/4, 2/6, or 8/15—depending on the
space.

1.3. A Brief History of Stubs. Stub-labeled graphs arise naturally from a rela-
tively simple stub matching process. The first step assigns a specific number of stubs
to each vertex, ensuring that each vertex will have exactly the desired number of
edges as specified by the degree sequence. To guarantee vertex i will have the correct
degree k;, we force one endpoint of each of k; edges to be vertex i, while the other
endpoint is left floating, unassigned. In this way, each vertex 7 has k; half-edges or
stubs. Joining two such stubs produces an edge. Note that by construction, every
vertex has the correct number of edges, so repeatedly joining pairs of stubs results in
a graph with the correct degree sequence, shown in Figure 1(b).

More precisely, the stub matching process takes a specified degree sequence {k; };cv
and generates a graph using the following randomized process. Each vertex i is as-
signed exactly k; stubs, and pairs of stubs are chosen uniformly at random and con-
nected until there are no remaining unpaired stubs. This process, which only requires
that the total number of stubs be even, creates a loopy multigraph with exactly
the specified degree sequence. Due to the fact that stubs are chosen uniformly at
random, this stub matching procedure (also called the pairing model [17]) samples
uniformly from the space of stub-labeled loopy multigraphs, as discussed further in
section 3.1.

Stub matching was first introduced by Bollobés [19] as a method for enumerating
the number of vertex-labeled simple graphs with certain degree sequences [11, 12].
Although stub matching draws from the space of stub-labeled loopy multigraphs,
Bollobas assumed that the degrees of all vertices did not grow too quickly relative
to the size of the graph, and then showed that the number of stub-labeled graphs
with self-loops and/or multiedges was asymptotically small relative to the number of
stub-labeled simple graphs. By the fact that every vertex-labeled simple graph is stub-
isomorphic to exactly ], k;! stub-labeled graphs (see section 4 and Figure 1(d)—(e)),
Bollobds provided an asymptotically tight estimate (for large graphs) of the number
of vertex-labeled simple graphs. Of note, Bollobas called each stub-labeled graph a
configuration, and this is the origin of the name configuration model for these uniform
distributions.
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Bollobas’ analysis contains two subtleties that are major sources of confusion
about configuration models. First, as noted above, every vertex-labeled simple graph
is isomorphic to a fixed number of stub-labeled simple graphs (e.g., this number is
four for the degree sequence {2,2,1,1} in Figure 1), but the same cannot be said
for graphs with self-loops or multiedges. Second, many analyses assume conditions
on the degree sequence (e.g., adequately bounded growth) under which the number
of nonsimple graphs is asymptotically small relative to the number of simple graphs,
but for any finite degree sequence the number of nonsimple graphs can represent a
substantial fraction of the graph space. The mathematical literature is almost always
precise regarding these two points. However, as configuration model random graphs
have spread into diverse fields following waves of interest in graph analysis and network
science methods, these points have often caused confusion in the broader literature,
as we discuss below. We hope that this work will help mark a turning point in that
confusion. In the remainder of this introduction, we briefly survey the history of
different applications of fixed-degree-sequence random graph null models, and then
summarize the concrete decisions that underlie the choices of different configuration
model null models.

1.4. A Brief History of Applications of Random Graphs with Fixed Degree
Sequence. The practice of comparing an observation to a randomized null model
has its origins in R. A. Fisher’s foundational work on randomization for hypothesis
testing [53]. Random graph null models extend this practice to the space of graphs.
They allow comparisons between properties of real-world graphs and properties of
graphs drawn at random from a graph space, ultimately allowing us to quantify what
is surprising and what is expected. However, as with any hypothesis test, the choice
of randomized null model directly affects the conclusions that can be drawn from
the test. For this reason, the classic but overly simplistic Erd6s—Rényi random graph
model, in which each possible edge exists independently with probability p, or its near
equivalent, and in which a fixed number of edges are placed between random pairs
of vertices, are usually avoided. Compared to an Erdés—Rényi null model, real-world
networks often appear rich in structure by comparison. Instead, due to the fact that
many key properties of networks are strongly constrained by the distribution of vertex
degrees [109, 18, 24, 34, 81, 118], it is far more common and appropriate to use as
a null model a space of graphs in which the degrees of all the vertices are fixed, but
where the edges are otherwise placed between vertices uniformly at random. This
family of degree-preserving random graph models, which we call configuration models
throughout this paper, have at different times been discovered independently and
used as null models in sociology, ecology, systems biology, combinatorics, statistics,
psychology, and network science, spanning over 80 years of applied research. We detail
some of this rich history here.

Null Models in Sociology: Chance Sociograms, 1930s. In 1934 Jacob Moreno
initiated the quantitative study of social networks through his influential book Who
Shall Survive? [103]. Soon thereafter, in 1938, Moreno and Jennings published Statis-
tics of Social Configurations, which introduced statistics to social network analysis
through the use of so-called chance sociograms, i.e., randomly sampled adjacency
matrices with fixed out-degrees (i.e., one fixed margin) [104]. Moreno and Jennings
argued that in order to establish the statistical significance of an analysis, one should
compare an observed social network with a network constructed through a chance
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experiment.? Moreno and Jennings demonstrated their procedure by studying a pop-
ulation of 26 children at the New York State Training School for Girls in Hudson,
NY. The children were surveyed for their three preferred dining partners, creating
a directed network of dining partner preferences. This observed network was com-
pared to a small set of seven manually randomized directed graphs restricted such
that each vertex had three outgoing edges and no multiedges (as in the observed
network). Moreno and Jennings contrasted their empirical graph with the small en-
semble of graphs drawn from their null model, and concluded that some observed
network features were statistically significant while others were not. While our focus
in this work is on undirected (as opposed to directed) configuration models, directed
configuration models are discussed briefly in section 3.2. Another significant early use
of a random graph null model in sociology is contained in Davis and Leinhardt’s work
testing Homans’ structural theory of social hierarchy from the 1950s [68]. The study
tested the theory by studying social network subgraph frequencies [38], contrasting
empirical frequencies with those of an Erdés—Rényi random graph null model.

Null Models in Ecology: Species Co-occurrence Patterns, 1970s. A configura-
tion model arose independently in ecology when, in 1975, Jared Diamond published an
analysis of bird species co-occurrence on the islands of the Bismarck Archipelago and
argued that, based on the patterns of species presence and absence observed across
the islands, the presence of some species precluded the presence of others [45]. In
1979, Connor and Simberloff argued that the patterns themselves were not sufficient
evidence for such conclusions; they argued that a null model of randomly assigned
species to islands, in which the number of species per island and number of islands
per species are exactly preserved, should be used to assess the possibility that the
empirical patterns are the result of random chance [35]. In other words, Connor and
Simberloff argued that observed patterns should be compared against a null model
and, in particular, against a degree-preserving configuration model, based on the ob-
served presence/absence matrix. This methodological debate has continued for over
40 years regarding both the correct null model and appropriate test statistics for quan-
tifying patterns of species presence/absence patterns (see [61] for a partial review).

Many contributions to the ongoing ecological discussion have been made in the
years since. In 1987, Wilson contributed a fixed marginal null model, which required
that any matrix in the ensemble have the same number of sites per species and species
per site as the observed data, corresponding directly to an undirected bipartite con-
figuration model with fixed degrees [138].> Wilson’s 1987 fixed marginal null model
assembled the network via a stub matching procedure. He found that the stub match-
ing was often unable to finish without creating a double edge, and so he found better
success rates by using a heuristic nearly equivalent to the Havel-Hakimi algorithm
[66, 65] (though Wilson states that he was unable to find any proof in the litera-

2Moreno and Jennings, in fact, frequently used the word “configurations” to describe their chance
sociograms, several decades before Bollobas’ work: “Study of the findings of sociometric tests showed
that the resulting configurations, in order to be compared with one another, were in need of some
common reference base from which to measure the deviations. It appeared that the most logical
ground for establishing such a reference could be secured by ascertaining the characteristics of typical
configurations produced by chance balloting for a similar size population with a like number of
choices.” That said, the term “configuration model” is generally accepted to stem from Bollobas’s
usage of the word.

3 A bipartite network is a network where edges only occur between two distinct sets of vertices. For
example, a plant-pollinator network contains both plants and insects as vertices and edges connecting
pollinating insects to plants, but no edges between pairs of insects or pairs of plants.
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ture of his method). This debate illustrates the disconnect between the ecology and
mathematics literatures at the time.

Null Models for Tables: Matrix Counting & Contingency Tables, 1970s-1990s.
Contingency tables are rectangular matrices with integer entries, representing a tab-
ulation of entities along two dimensions, e.g., the number of college graduates by
major and institution. These tables, when viewed as adjacency matrices, characterize
an undirected bipartite multigraph. There are straightforward analogous connections
between the binary tables in ecology and the more general (nonbinary) contingency
tables studied in statistics [31]. As in the network literature, contingency table analy-
ses often involve asking whether table properties are interesting compared to random
tables with the same row and column totals (the same marginal totals). An initial
focus of this literature was on enumerating the matrices with fixed marginals [56, 44].
Compared to presence/absence matrices, where the entries are restricted to be either
0 or 1, analyzing adjacency matrices corresponding to contingency tables is much
more straightforward. Many direct sampling procedures have been proposed [113], as
well as procedures which ezactly characterize the null distribution of tables with fixed
marginals and do not rely on sampling (see [134, 1] for reviews of these methods).

Null Models in Systems Biology: Network Motifs, 2000s. As the large-scale
study of both genetic regulatory networks and neuronal networks emerged in the
early 2000s, lengthy debates were held in the literature regarding the choices of (and
technical means for sampling from) null models. The debate on genetic regulatory
networks began with a study by Milo et al. that found specific network motifs (regu-
latory patterns) that were more frequent than expected in a configuration model null
model [100, 70]. Soon after that work was published, King issued a commentary that
called attention to choices in the design of the random graph sampling algorithms
in these works, noting that they did not sample uniformly from any graph spaces of
reasonable interest [74]. A series of responses by the original authors led to corrected
algorithms for sampling from the stub-labeled spaces of random graphs with fixed
degree sequences [99, 69]. It is worth mentioning that other work on configuration
model null models of genetic regulatory networks, using correct sampling techniques,
was also being conducted in parallel to the above controversy [90].

A parallel debate in the literature on neuronal networks noted that the study of
network motifs in neuronal networks [100, 98] involving comparisons between observed
structures and configuration model random graphs was flawed at a deeper conceptual
level, as it overlooked the role of spatial structure in brains [5]. A series of published
exchanges followed [97, 6], leading to the study of specific spatial network null models
for studying brain networks [123]. A similar adaptation, known as distance modularity
[87], has recently been introduced to the broader literature on network community
detection.

Other applications of configuration model random graph null models include stud-
ies of patterns in the structure of the world wide web [109], the Internet [91], food
webs [127], academic career trajectories [89], the dynamics of social contagion [28],
disease propagation [124], opinion dynamics [137], and economic network effects [129)].
As we discuss at length in section 5.3, these null models also underlie all community
detection methods based on modularity maximization [108]. Across these diverse ap-
plications as well as the earlier literature, different applications have tended to employ
slightly different null models, and these variations make it very difficult to compare
and contrast findings. In the next subsection we introduce a sequence of concrete
choices that formalize the decisions underlying the choice of a graph space, and hence
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a configuration model. Consequences of these decisions are discussed at length in
section 5 through a series of application vignettes.

1.5. Choosing a Graph Space. It is often impossible to unambiguously identify
an empirical graph as coming from a particular space of graphs; additional knowledge
about the system that produced the graph is almost always required. For example, as
shown in Figure 1, simple graphs are a subset of the other graph spaces, and thus a
given simple graph may plausibly lie within any of the spaces, defined by the presence
or absence of self-loops, multiedges, and stub-labels. Therefore, in order to choose
the appropriate graph space for a null model, we introduce three questions about the
graph and the system that produced it.

Question I: Are There Self-Loops in the Graph? For example, a citation net-
work consisting of papers (as vertices) and their citation relationships (as edges)
cannot have self-loops, since a single paper can never cite itself. On the other hand, a
network of authors (as vertices) and their citation relationships (as edges) may very
well have self-loops since authors can, and do, cite their own work. Note that an
observed network of authors and their citations ought to reside within a graph space
allowing self-loops, even if a particular observed network has no self-loops. However,
in some cases, the method of data collection or recording may itself preclude self-
loops—even if a self-loop would be reasonable and interpretable—and in such cases,
the relevant graph space should not include self-loops.

Question 2: Are There Multiedges in the Graph? For example, a network of
contacts among barn swallows—analyzed in section 5.2—in which each edge repre-
sents an observed interaction between a pair of birds, may have multiedges corre-
sponding to multiple observations of an interaction between the same pair of birds.
On the other hand, a protein-protein interaction network, in which two proteins are
connected if they interact, cannot ever have a multiedge since interactions in this
context are conceptually boolean. Note that an observed network may reside within a
graph space allowing multiedges, even if a particular observed network has no multi-
edges. However, as in Question 1, in some cases, the method of data collection or
recording itself may preclude multiedges—even if a multiedge would be reasonable
and interpretable—and in such cases, the relevant graph space should not include
multiedges.

If the answers to the first two questions are both no, then the space of simple
graphs is the appropriate one. For the purposes of sampling from a simple configura-
tion model, there is then no meaningful difference between vertex- and stub-labeled
spaces. One need only ensure that the graph sampling algorithm correctly samples
from the space of simple graphs (a nontrivial task further discussed in section 2), due
to the fact that any ensemble of vertex-labeled simple graphs can easily be converted
into an ensemble of stub-labeled simple graphs, and vice versa (see section 4 for fur-
ther discussion). However, if the answer to either of the previous questions was yes,
indicating that the graph space contains self-loops, multiedges, or both, we pose a
key third question.

Question 3: Is the Graph Space Stub-Labeled or Vertex-Labeled? Consider a
pair of vertices connected by two edges. If swapping the edges so that they cross, as
shown in Figure 2, produces a distinct graph, the space is stub-labeled. Alternatively,
if crossing the edges either produces a graph with the same interpretation or produces
a nonsensical graph, the space is vertex-labeled.
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Question 1: loops? Question 3: vertex- or stub-labeled?
stub-labeled
x These configurations are . . . A
Y o [ ) @® - twographs

« one graph, drawn two ways — |—

multigraph

« one valid; two nonsensical

% PRIV smole oony [ ) @ - one valid; one nonsensical — |—
% (skip Q3)
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"g ‘ ‘ multigraph loopy ‘ ‘ . t)hr::Z?arsr’:?Zrawn three ways
5
(| ]

Y

vertex-labeled

Fig. 2 Choosing a graph space. Three questions must be answered in order to correctly choose a
configuration model graph space. Questions 1 and 2 address whether the graph has, or could
possibly have, self-loops and multiedges. If the space permits self-loops, multiedges, or both,
then Question 3 addresses whether the space is vertex-labeled or stub-labeled. These questions
are explained in detail in section 1.5.

There are a number of instances where a graph should be treated as vertex-labeled
rather than stub-labeled. For example, if the stubs are ordered (e.g., temporally) in
a way that would make swapping nonsensical, the space of graphs is vertex-labeled
in spite of the fact that the stubs have identities. Such a situation is commonly
encountered when studying a telephone network (also called a call detail record or
CDR), where edges represent phone calls between individuals. If a pair of individuals
is recorded sharing two phone calls, it is meaningless to consider the crossed graph
that connects the stub associated with the first call and the first individual to the stub
associated with the second call and the second individual, as this swap represents a
graph that could never have been observed. See section 5.2 for a concrete exploration
of these differences. If, on the other hand, the crossed edges and parallel edges as
shown in Figure 2 are distinguishable and plausible, the space of graphs should be
stub-labeled. For example, in a network of intermarriages between families or villages,
an edge may correspond to an individual from one village marrying an individual from
another village. Here, different sets of marital pairings are meaningful and distinct,
indicating that the graph space is stub-labeled.

One alternative approach to answering Question 3 involves considering the adja-
cency matrix of the graph. For a vertex-labeled space, each graph corresponds to a
single, unique adjacency matrix, and each adjacency matrix corresponds to a single,
unique vertex-labeled graph. On the other hand, multiple stub-labeled graphs have
identical adjacency matrices, and a valid adjacency matrix corresponds to a stub-
isomorphism class of stub-labeled graphs, as shown in Figure 1. Thus, Question 3
may be answered by considering whether the adjacency matrices corresponding to the
graph space are unique and distinct objects, or whether repeated adjacency matrices
are allowed in the ensemble.

Answers to the first two questions in this section fully specify whether the graph
space is simple, loopy, multigraph, or loopy multigraph, and the answer to the third
question determines whether the space is stub-labeled or vertex-labeled. Since, for the
purposes of sampling simple graphs or analyzing network properties that are functions
of the adjacency matrix, there is no practical difference between stub-labeled and
vertex-labeled spaces, we may often treat these as equivalent and focus on the seven
distinct and noninterchangeable spaces of graphs just described.
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Organization. In section 2 we describe space-specific Markov chain Monte Carlo
algorithms that provably generate uniform samples from the graph spaces discussed
above. Alternative methods for sampling random graph null models are discussed
in section 3, and related questions about counting the number of graphs in a given
graph space are covered in section 4. Section 5 employs the samplers from section 2,
examining the questions and decisions outlined in this introduction in the context
of three separate applications of configuration model null models to study empirical
network structure. Readers whose primary interest is understanding the practical
consequences of configuration model choices are invited to skip sections 2—4 and go
directly to section 5, though the earlier sections establish the procedures employed
therein.

2. Markov Chain Monte Carlo Sampling. In this section we establish theoret-
ical justifications for the use of Markov chain Monte Carlo (MCMC) methods to
uniformly sample from graph spaces with a fixed degree sequence, with specific con-
siderations for multiedges, self-loops, and vertex- or stub-labeling. In all methods
presented in this section, a Markov chain over the desired space of graphs is designed
to have a stationary distribution that is uniform over the entire space. We emphasize
key differences between sampling stub-labeled and vertex-labeled graph spaces, and
furnish pseudocode for all the MCMC sampling algorithms that we analyze.*

We begin by reviewing the double edge swap Markov chain method for sampling
stub-labeled loopy multigraphs, the easiest space in which to understand the valid-
ity of the sampling procedure. We outline the three sufficient conditions (regularity,
aperiodicity, connectivity) that combine to establish that random double edge swaps
on stub-labeled loopy multigraphs have a unique and uniform stationary distribution.
The corresponding lemmas and theorems are then reported, with references provided
for known proofs, for stub-labeled simple graphs and stub-labeled multigraphs (with-
out loops).

Following the treatment of stub-labeled graph spaces, we then characterize Markov
chains with stationary distributions that are uniform over vertex-labeled graph spaces.
These chains have not previously been described, though they are closely related to
existing methods for sampling the space of contingency tables with fixed marginals
[134], a problem from the statistics literature that is discussed in the introduction.

Sampling from spaces of loopy graphs (without multiedges) is not discussed in
this section. Such spaces lack certain key properties necessary for sampling methods
involving double edge swap routines to succeed. We elaborate on this matter in section
3, where we also discuss other methods for graph sampling, including alternative
Markov chains as well as direct sampling techniques.

2.1. Edge Swap Markov Chains. First developed for bipartite simple graphs
[14] and directed simple graphs [117], Markov chain traversals of graph spaces are
popular ways to sample from a variety of graph spaces [96, 6, 106]. If the Markov
chain is constructed so that the stationary distribution of the chain is the uniform
distribution over the desired graph space, samples taken from this chain at sufficiently
spaced intervals (see the discussion of mixing times in section 2.5) can be treated as
independent uniform samples from the space.

The fundamental gadget underlying the approach is a randomized way of gen-
erating new graphs from existing graphs. Seemingly rediscovered multiple times

4Implementations in Python are available at https://github.com/joelnish/double-edge-swap-

mcme.
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(u, ), (x,y) ~ (u,2), (v,y) (u,v), (y, ) ~ (u,y), (v,2)

Fig. 3 Double edge swaps. Double edge swaps alter a graph’s structure without changing the degree
sequence. FEach pair of edges may be swapped in two different ways: (left) (u,v), (x,y) ~
(u,2), (v,y) and (right) (u,v), (y,z) ~ (v, y), (v, z).

[65, 119, 106, 16], the most popular way to alter a graph without changing the degree
sequence is the double edge swap, first suggested by Petersen in 1891 [115] and de-
picted in Figure 3. Let {uq,...,ux, } denote the set of edge stubs for a vertex u with
degree k,. Across the literature, double edge swaps are also sometimes referred to as
degree-preserving rewirings [22, 131], checkerboard swaps® [126, 61, 6], tetrads [135],
or alternating rectangles [117].

DEFINITION 2.1 (double edge swap, stub-labeled). A stub-labeled double edge
swap replaces a pair of stub-labeled edges (u;,v;) and (xp,yq) with stub-labeled edges
(ui,xp) and (vj,yq)-

Explicitly labeling stubs emphasizes that the stub-labeled double edge swap differs
from its vertex-labeled version. That said, the notation of tracking stubs is largely
unnecessary as the exact labels of stubs can be inferred in context and standard
network analyses (of assortativity, modularity, etc.) do not consider stub labels. For
a pair of edges (u,v) and (z,y) there are two possible swaps, as shown in Figure 3.
As a shorthand, we denote these possible swaps as (u,v), (z,y) ~ (u, ), (v,y) and
(,0), (9, ) ~ (u,y), (v, ).

In contrast to arbitrary edge rewires [21], double edge swaps preserve the degree
distribution of the graph. Notice, however, that some double edge swaps can create
self-loops, e.g., (u,z), (u,y) ~ (u,u),(x,y), as well as multiedges, e.g., when any
produced edge replicates an existing edge. The way such swaps are handled has
important consequences for the stationary distribution of the Markov chain.

Many of the properties of the double edge swap can be understood as graphical
properties of the graph of graphs, the state diagram of the Markov chain in the space
of graphs. We construct the graph of graphs associated with a degree sequence by
letting each graph with the specified degree sequence be a vertex and connecting two
vertices (i.e., graphs) with an edge if one double edge swap can transform one graph
into the other. We use G(k) or G to generically denote a graph of graphs with a
specified degree sequence k = {k; };cyv. Throughout the text we only consider graph
spaces with a given degree sequence, and as a consequence we almost always suppress
the degree sequence k from the notation, denoting a graph of graphs as simply G.
With a few simple yet crucial modifications, sampling graphs using a random walk on
G creates a Markov chain with a stationary distribution that is uniform over a desired
graph space with a given degree sequence.

The statements in the following sections can be stated either in the language of
Markov chains or in the language of graph properties of G. To prove that samples

5Checkerboard swaps are frequently implemented by selecting four vertices at random [6], while
double edge swaps choose two edges at random. We focus on selecting edges at random as it is more
efficient on sparse graphs.
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from the Markov chain asymptotically obey a uniform distribution over a space of
graphs, we show that by correctly specifying state transition probabilities, the chain
satisfies three conditions:

(i) that the transition matrix of the chain is doubly stochastic (G is regular®),

(ii) that the chain is irreducible (equivalently, G is strongly connected”), and

(iii) that the chain is aperiodic (G is aperiodic®).
The regularity of G implies that the stationary distribution is uniform. A Markov
chain that is both irreducible and aperiodic (G is connected and aperiodic) is said to
be ergodic. This property guarantees that there is an unique stationary distribution
that fully describes the long-term behavior of the chain. Aperiodicity of G is often
immediate and is particularly important if one wishes to subsample a Markov chain,
a common strategy where only an infrequent set of samples (less sequentially corre-
lated than the full set of samples) is retained. Once regularity and aperiodicity are
established for loopy multigraphs, we show that with the appropriate modifications
to transition probabilities, these properties also hold for the graph of graphs associ-
ated with any subspace of loopy multigraphs with a fixed degree sequence, whether
vertex-labeled or stub-labeled. In contrast, connectivity of G (the irreducibility of
the Markov chain) is not always guaranteed and requires a nontrivial proof for many
graph spaces, but is critical to ensuring that all possible graphs are sampled.

2.2. Markov Chains on Stub-Labeled Loopy Multigraphs. We begin by con-
sidering the simplest graph space for constructing and analyzing double edge swaps,
Qiﬁ};b, where stub denotes stub-labeled, m denotes an allowance for multiedges, and [
denotes an allowance for loops. Further, let M = % > icv ki denote the total number

of edges in any graph in the graph space.

DEFINITION 2.2 (graph of loopy multigraphs, stub-labeled). For some predefined
degree sequence k = {k;}, the graph of stub-labeled loopy multigraphs gsfub =
{yptub, S““b} is a directed graph, where the vertex set Vét“b is the set of all stub-
labeled loopy multigraphs with degree sequence k and there is a directed edge (G1 —
Go) € 55”#1’ iff there exists a stub-labeled double edge swap that transforms G € Vs’fjl‘b
into Gy € VSt“b.

For the space of loopy multigraphs, all edges in the graph of graphs gst“b are
reciprocated: any double edge swap of distinct edges leads to a graph in the space and
the double edge swap on (u,v), (z,y) ~ (u,x), (v,y) can be undone by the “reciprocal”
double edge swap (u, x), (v,y) ~ (u,v), (z,y). Note, however, that double edge swaps
in other spaces are not necessarily reciprocated by the same number of swaps.

We now show the three necessary conditions: that gsfub is regular, connected,
and aperiodic.

LEMMA 2.3. Ql‘itrf:b s a reqular graph.
Proof. For each graph G; € Vfﬁ}fb there are (1‘2/[) pairs of edges and M (M — 1)
possible double edge swaps that each correspond to a unique graph-graph transition

edge into and out of G;. We immediately see that QSt“b is M(M — 1) regular, where
each vertex has M (M — 1) incoming and outgoing edges. O

6 A weighted directed graph is regular if every vertex has the same total out-degree weight and

total in-degree weight. For unweighted graphs, regularity implies all vertices have equal degree.

7A graph is strongly connected if every vertex can be reached from any other vertex.

8A graph is aperiodic if the greatest common divisor of the lengths of all cycles in the graph is
one.
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Next, the following lemma, first proved by [47] and largely provided by Newman in
[106], gives connectivity for stub-labeled loopy multigraphs with any specified degree
sequence.

LEMMA 2.4. gitm“b is a strongly connected graph.

Proof. First, we note that it is possible to permute stub labels using double
edge swaps: for a graph G; € Vij};b with vertex w with degree at least 2 (ver-
tices with degree 1 have only a single possible stub-labeling), a double edge swap
(us, ax), (be,us) ~ (us,be), (uj,ar) swaps two labeled stubs of u. Since double edge
swaps allow for pairwise swaps of stubs, all possible stub-labelings within a given stub-
isomorphism class of graphs are connected within fo;;jb (or any other stub-labeled
space we discuss). The remainder of the proof therefore only requires showing that
every stub-isomorphism class is connected to every other one.

To complete the proof, we drop stub labels and show how to construct a path
from any Gy = (Vi, E1) € Gt to any nonisomorphic Gy = (Va, Es) € gitm“b such that
each step in the path creates and does not eliminate edges in Eo. Let €12 = |E}\ E5],
where the asterisks denote that the stub labels have been dropped from the edge
sets. Since €12 = 0 if and only if G is isomorphic to G, it suffices to show that
for any nonisomorphic graphs G; and G there exists a neighbor of G, G3, with
€32 <e€12— 1.

Since €12 > 0, there exist (u,v) € E3 \ EY. However, since the degrees of u and v
are, respectively, the same in both G and G, there must be edges (u,x) and (v,y)
in Ef \ E5. Performing the double edge swap (u,z), (v,y) ~ (u,v),(x,y) creates
a graph Gz with edge (u,v) and thus with €32 < €19 — 1. Since €2 is finite, a
repeated application of this argument eventually produces a path, and therefore gfﬁ}ib
is connected.

LEMMA 2.5. gf,t,::b is an aperiodic graph.

Proof. If G € Vﬁfﬁb has only a single edge, gf’?jb is trivially aperiodic since
|Vﬁf}jb| = 1. If G has two edges (u,v) and (x,y), then g;tmub contains both a cy-
cle of length 2 (because all transitions are reciprocated) and also a cycle of length 3:
(u,v), (z,y) ~ (u,z), (v,y) followed by (u, z), (y,v) ~ (u,y), (x,v) and (u,y), (v, z) ~~
(u,v), (z,y). The greatest common divisor of the cycle lengths 2 and 3 is 1, and there-
fore gitm“b is aperiodic. O

The following theorem assembles the above properties to establish the desired
uniformity of the MCMC sampler.

THEOREM 2.6. A random walk on Ql“i%b is ergodic and has a uniform stationary
distribution.

Proof. Since gfﬁjfbb is strongly connected (Lemma 2.4) and aperiodic (Lemma 2.5),

random walks on GF'“0 are ergodic. Since Gi'%t is also regular (Lemma 2.3), it has

the unique stationary distribution ]

1
Vil
Thus, we conclude that a Markov chain defined as a random walk on gi’,fjjb in fact
samples from the uniform distribution of stub-labeled loopy multigraphs, as desired.
A similar MCMC approach can sample the other graph spaces under analysis here,

though the proofs are slightly more involved.

2.3. Markov Chains on Other Stub-Labeled Graph Spaces. We now show that
with some care it is possible to construct Markov chains defined over the other stub-
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labeled graph spaces we have discussed such that their stationary distributions are
also uniform. We establish this uniformity by deriving state transitions that ensure
the chains are regular, connected, and aperiodic. Our results here apply to spaces of
either simple graphs or multigraphs with a given degree sequence. The space of loopy
graphs (without multiedges) with a given degree sequence is not connected by double
edge swaps for all degree sequences and so we do not discuss it here; see section 3 for
more details on that space.

DEFINITION 2.7 (graph of multigraphs and graph of simple graphs, stub-labeled).
For a degree sequence k = {k;}, the graph of stub-labeled simple graphs Gt =
{ystub gstuby s q directed graph of simple graphs. For distinct G; and G in V', q
directed edge (G; — G) is in E3tub if and only if there exists a double edge swap that
transforms G; into G;; for any double edge swap that would transform G; to a graph
G that is not in Vstub there instead exists a directed self-loop G; — G;. The graph
of stub-labeled multigraphs Gt"* is defined similarly for multigraphs, with subscripts
of m where appropriate.

A critical difference between the definitions of Q‘;t“b and g;;fub compared with
the earlier definition of gitm“b is the inclusion of directed self-loops G; — G; for each
swap that would leave the space. This modification essentially employs the “swap
and hold” [6] (also called “trial swap” [96]) method to ensure the graph of graphs is
regular.?

Indeed, we will now show that ggtub and g;;fub are both regular and aperiodic.
As a result, extending Theorem 2.6 only requires space-specific proofs of connectivity,
which we provide.

LEMMA 2.8. G5%0 and G5t are regular graphs.

Proof. Asin Lemma 2.3, a graph G; in either space has (]g) pairs of edges, which
correspond with M (M —1) possible double edge swaps. Notice that any possible swap
from G; to another graph G; in the space is reciprocated, while any swap that would
go to a graph outside of the space corresponds to an incoming self-loop, as constructed
in the definition of G5*“* and G5!“*. Thus, any graph G; in either of these two spaces
has in-degree and out-degree M (M — 1). |

LEMMA 2.9. G5%0 and G5t are aperiodic graphs.

Proof. If there are any self-loops in the graph of graphs (where self-loops corre-
spond to rejected swaps) and the graph of graphs is also connected, then it is aperi-
odic. Meanwhile, if the graph of graphs does not have any rejected swaps (e.g., when
max;ey k; < 2), then it has the exact same structure as gitm“b and is thus aperiodic
by Lemma 2.5. O

Before proving connectivity of the graph of graphs in the next lemma, we note
that the proofs of Lemmas 2.8 and 2.9 are easily and directly applied to any subspace
of stub-labeled loopy multigraphs with fixed degree sequence (e.g., subspaces of graphs
consisting of a single connected component, or subspaces with a constrained number
of triangle motifs). However, despite the fact that regularity and aperiodicity are easy
to establish for the graphs of graphs corresponding to such subspaces, proofs of their

91n spaces featuring graphs without self-loops, each graph will have exactly Ziev (kzi) swaps that
could create self-loops; thus regularity is preserved if swaps that create self-loops either resample the
current graph or are all ignored as possible swaps. There is a computational benefit from ignoring
self-loop-creating edge swaps (as opposed to resampling the current graph), but it is likely small for
most degree sequences.
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connectivity, if they are possible at all, require more complicated and subspace-specific
constructions and are considerably more involved. In fact, as noted above, for loopy
graphs (without multiedges) connectivity does not hold for all degree sequences; see
section 3. Below we establish the connectivity of G5¢“* and G*“® for any given degree
sequence.

LEMMA 2.10. G5t s a strongly connected graph.

Proof. The proof that gffm“b is connected (Lemma 2.4) can be adjusted very
slightly for the absence of self-loops. In the proof of Lemma 2.4, if the two edges
being considered for a double edge swap share an endpoint vertex, then rewiring
(u,z) and (v, z) creates the desired edge (u,v) but also the self-loop (z,x), and thus
is not a valid swap as it would not stay within the space of loop-free multigraphs.
But since x has two edges contained in E; \ E2 and z has the same degree in both the
graph Gs and Gy, there must exist at least one edge (z,2) € Es \ E1, where z # u,
z # v. Rewiring (u,v) and (z,z) in Gy produces a neighboring graph G5 with edge
(u,x) and thus €13 < €12 — L. O

LEMMA 2.11. G5t js a strongly connected graph.

We do not provide a proof here as this result has been proven independently
many times: in 1962 [13], stated without proof in 1973 [46], proved twice in the same

monograph but by different authors in 1981 [48, 131], in 1994 [16], and most recently
in 2010 [139].

THEOREM 2.12. A random walk on G3t* or GS*b is ergodic and has a uniform
stationary distribution.

Proof. Being regular (by Lemma 2.8), connected (by Lemmas 2.10 and 2.11), and
aperiodic (by Lemma 2.9) graphs, random walks on G5¢“* and G5'“® are ergodic and

have the unique stationary distributions |VS£“b| and |v$ub|’ respectively. 0
m s

We conclude this subsection on sampling stub-labeled graph spaces with pseudo-
code for a uniform sampling algorithm. The important distinction between this al-
gorithm and most incorrect algorithms (see section 3.1 for a further discussion of
sampling algorithms known to be nonuniform) is that incorrect algorithms have a
tendency to overlook the resampling step.'°

2.4. Markov Chains on Vertex-Labeled Spaces. For any analysis of simple
graph null models, sampling from the vertex-labeled space is equivalent to sampling
from the stub-labeled space: the two distributions are proportional within stub-
isomorphism classes (see section 4 for details on this conversion). For nonsimple
graphs, the vertex-labeled and stub-labeled spaces are no longer cleanly proportional,
but we show it is possible to adapt the double edge swap MCMC procedures to uni-
formly sample vertex-labeled graph spaces. We begin with the following definition,
closely related to the double edge swap defined for stub-labeled spaces.

DEFINITION 2.13 (double edge swap, vertex-labeled). A vertex-labeled double
edge swap replaces pair of edges (u,v) and (x,y) with edges (u,x) and (v,y).

As in the stub-labeled setting, the vertex-labeled double edge swap leads to a
Markov chain on the graph of vertex-labeled graphs, which we generically denote with
Gve"t (in contrast with G**“?). In any graph space, stub-labeled double edge swaps

19Tmplementations in Python are available at https://github.com/joelnish/double-edge-swap-

mcme.
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map onto vertex-labeled double edge swaps simply by ignoring the stub-labeling:
a vertex-labeled graph of graphs GV can be created by treating stub-isomorphic
graphs within G5'"* as a single graph in G"¢"*. This construction of G’¢"* gives def-
initions for Gyert, Grert, and GY'* as agglomerated, weighted, and directed versions

(O m
of the stub-labeled graphs of graphs leﬁﬁb, Gstub and Gstub| respectively. As a result,
they immediately inherit the strong connectivity and aperiodicity properties of their

respective stub-labeled spaces, as follows.

LEMMA 2.14. GPert Gguert - and G2 are strongly connected.!!

ILm 2 Im
Proof. Each of the vertex-labeled graphs of graphs can be created by repeatedly
combining vertices from the analogous stub-labeled graph of graphs until all stub-
permutations of the same vertex-labeled graph have been combined. Since iteratively
combining vertices preserves connectivity, gﬁ%t, vert “and GY¢t inherit strong con-
nectivity from Gitub, Grert, and Gt 0

LEMMA 2.15. GUert Gvert and gﬁfn” are aperiodic graphs.

Proof. For any fixed degree sequence, the proofs of Lemmas 2.5 and 2.9 either
apply directly, and thereby establish aperiodicity, or they do not apply because they
necessitate double edge swaps between two graphs in the same stub-isomorphism
class. However, even in this case, the double edge swap between graphs in the same
stub-isomorphism class implies there is a self-loop in the graph of graphs, and the
graph of graphs is thus aperiodic. 0

Algorithm 1 Stub-labeled MCMC
Input: initial graph Gy, graph space (simple, multigraph, or loopy multigraph)
Output: sequence of graphs G;
for i < number of graphs to sample do
choose two edges at random
randomly choose one of the two possible swaps
if edge swap would leave graph space then
resample current graph: G; < G;_1
else
swap the chosen edges, producing G;
end if
end for

While connectivity and aperiodicity of vertex-labeled graphs of graphs follow di-
rectly from the properties of the stub-labeled spaces, regularity is more complicated.
The analysis of stub-labeled graphs of graphs relied on the fact that each swap had
a unique reciprocal swap. This reciprocity is not present in vertex-labeled graphs of
graphs. For example, consider g;jf,:t on a degree sequence as simple as {2,1,1}. As
shown in Figure 4(a), the graph of graphs G/¢"*({2,1,1}) contains only two possible
graphs: G (with self-loop (z,z) and edge (u,v)) and Go (with two adjacent edges
(u,z) and (v,z)). Every swap originating in Gy creates Go (both swaps of (z,x)
and (u,v) create (u,z) and (v,z)), but only one of the two possible swaps origi-
nating in G reaches G1 ((u, z), (v, x) ~ (u,v), (x,z) corresponds to Gy — G1, while

11 Additionally, the graph space which allows multiedges and single self-loops is connected under

edge swaps, while the graph space which allows only single edges, but potentially multiple self-loops,
is disconnected under edge swaps for some degree sequences [110].
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Fig. 4 Transition probabilities for uniform sampling. The graph of vertez-labeled loopy multigraphs
Grert({2,1,1}) contains two possible graphs G1 and G2. (a) A random walk on this graph of

graphs has Pr(G1 — G2) = 1 but Pr(G2 — G1) = %, and therefore its corresponding Markov
chain will not have a uniform stationary distribution since the graph of graphs is not reqular.
(b) If transition probabilities are modified such that each graph has equal in-degree weight
and out-degree weight (i.e., transition mass), and these weights are equal to each other, the
corresponding Markov chain will have a uniform stationary distribution and will therefore
sample each graph with equal probability.

(u, ), (x,v) ~ (u,x), (x,v) corresponds to Gy — Gz). If unaltered, a random walk on
Gpert({2,1,1}) has the nonuniform stationary distribution (Pr(G1) = 3,Pr(Gz) = 3).

l,m
Restoring the regularity of G/¢7*({2,1,1}), as in Figure 4(b), is achieved by rejecting

vert
l,m

the swap G; — Gy with probability % and instead looping back to G;. Figure 4
shows a difficulty arising from self-loops; vertex-labeled swaps of multiedges suffer a
similar problem with a similar resolution. As we will show, an extra layer of rejection
sampling suffices to restore the uniform stationary distribution for any vertex-labeled
graph.

There are two natural ways to implement rejection sampling for vertex-labeled
graphs, which we provide in Algorithm 2 and in the supplemental material, Algo-
rithm SM1. The simpler of the two approaches, Algorithm 2, employs a rejection
sampling that modifies all swaps G; — Gj, © # j, to have probability % The
following lemma demonstrates that Algorithm 2 achieves this uniform probability on
all possible swaps.

LEMMA 2.16. A Markov chain defined by a random walk on GP¢Tt, GU¢rt | or GUert

ILm 2 Im
with transition probabilities given by Algorithm 2 has a doubly stochastic transition

matriz.

Proof. Algorithm 2 randomly selects two edges e; and e; and also selects one
of the two possible ways to swap e; and es. The goal is to make all swaps equally

probable. If e; or es is a self-loop, then the potential swap is rejected with probability
L. If not rejected, then if both edges connect the same vertices (i.e., e; = e3), the

2

swap is made with probability — 4 2 where we, is the multiplicity of edge ey,
€1

1

wel—1)7
Weq Wey

and otherwise the swap is made with probability If no swap is made or

the proposed swap would not change the graph (e.g., (u,v)(v,v) ~ (u,v)(v,v)), the
current graph is resampled by the chain. To see that these rejection probabilities give
all swaps an equal overall probability of success, consider the following table of double
edge swap cases, which presents the form of each possible swap, the number of such
possible swaps, and the acceptan