
Finding Heaviest k-Subgraphs
and Events in Social Media

Matthaios Letsios
Institut Mines Telecom, Telecom Paristech

letsiosm@gmail.com

Oana Denisa Balalau
Institut Mines Telecom, Telecom Paristech

balalau@telecom-paristech.fr

Maximilien Danisch
Institut Mines Telecom, Telecom Paristech

danisch@telecom-paristech.fr

Emmanuel Orsini
Google Inc., Zurich

emmanuel.orsini@polytechnique.edu

Mauro Sozio
Institut Mines Telecom, Telecom Paristech

sozio@telecom-paristech.fr

Abstract—In recent years, social media have become a useful
tool to stay in contact with friends, to share thoughts but also
to be informed about events. Users can follow news channels,
but they can be the ones reporting updates, which distinguishes
social media from traditional media. In this paper, we use a
graph mining approach for finding events in a graph constructed
starting from posts of users. We develop an exact algorithm for
solving the heaviest k-subgraph problem which is an NP-hard
problem. Our experimental analysis on large real-world graphs
shows that our algorithm is able to compute the exact solutions
for k up to 15 or more depending on the structure of the graph.
We also develop an approximation version of our algorithm
scaling to larger k. In comparison, for this setting, the classical
heuristic based on weighted core decomposition only leads to
sub-optimal solutions. Finally, we show that our algorithm can
be used to find relevant events in Twitter. Indeed, as an event is
usually described by a small number of words, our algorithm is
a useful tool to detect them.

I. INTRODUCTION

There is an urgent need to develop efficient algorithms
that are able to make sense of the unprecedented amount of
data produced daily by social media users, such as users of
Facebook, Twitter, etc.

Osborne et al. [17] compared Twitter, Facebook and Google
Plus in order to determine which online social network would
offer a better coverage of world news. While all three so-
cial media perform comparably well in terms of coverage,
Osborne et al. [17] observed that in Twitter interesting news
are reported in a more timely fashion. Twitter has also the
additional advantage of providing free access to the stream of
tweets posted by the users through a streaming API. Given
these advantages, we will focus on event detection on Twitter.

Algorithms for finding dense subgraphs (i.e. subgraphs with
a relative large number of edges) have proved to be an effective
tool in data analysis with applications in community detection
[9], finding patterns in gene annotation graphs [18], link spam
detection [11], as well as event detection in social media [1].

The data is represented as an undirected weighted graph rep-
resenting the co-occurrence between relevant terms mentioned
in tweets. In such a graph, nodes represent relevant terms
(such as countries, terms such as ’earthquake’, ’shooting’,
etc.) while each edge indicates whether the two corresponding

terms co-occur together in tweets. Each edge is associated with
a positive weight measuring the number of co-occurrences of
the corresponding terms in tweets.

As events unfold, terms related to the event start to co-occur
often in tweets leading to the emergence of a dense subgraph.
The average degree of a subgraph is a widely used measure of
its density. The problem of finding a subgraph with maximum
average degree is called the densest subgraph problem and can
be solved in polynomial time using a parametric maximum
flow algorithm [12].

However, in some applications such as event detection,
densest subgraphs might be large and difficult to analyze. In
order to cope with this limitation, we consider the problem of
finding dense subgraphs under size restriction. In particular,
given a weighted graph we wish to find a subgraph with
k nodes with maximum total edge weight. This problem is
referred in the literature as the heaviest k-subgraph problem
(HkS) and also as the weighted version of the densest k-
subgraph problem. The problem is NP-hard and difficult to
approximate. In our work we leverage the properties of real-
world graphs, so as to develop efficient algorithms.

We summarize our contributions as follows.
• We develop an efficient (exact) branch and bound al-

gorithm to solve the heaviest k-subgraph problem. Our
algorithm scales to large weighted real-world networks,
for k up to 15 or more depending on the structure of the
graph. We also develop an approximated version of our
algorithm scaling to even larger values of k. We show
that our algorithms are more effective than state-of-the-
art heuristics for the same problem. Our code in C is
publicly available1.

• We show that our algorithm is better suited as a sub-
routine for solving related problems, like finding the
top t HkS in a graph. In social media, more than one
event is discussed in the same time frame, which might
correspond to several heavy subgraphs.

• We include a case study showing that HkS correspond to
relevant events in Twitter.

1https://github.com/maxdan94/HkS

The rest of the paper is organized as follows. In Section
II we define formally the problems we will attempt to solve,
then we present the related work concerning dense subgraph
identification applied to event detection in Section III. In Sec-
tion IV, we present our algorithms for solving the problems.
We then evaluate the performance of our algorithm to detect
events in Section V. Finally, we conclude and present future
work in Section VI.

II. PROBLEM DEFINITION

In this section, we give a formal definition of the problems
we study in our work. We also introduce necessary notations
and definitions that shall be used in the rest of the paper.
We shall assume that we are given an undirected graph G =
(V (G), E(G)) and a weight function w : E(G)→ R+.

Problem definition (Heaviest-k-Subgraph problem). Given an
undirected weighted graph G and an integer k > 1, we wish
to find a subgraph containing k nodes and such that the sum
of the weights its edges is maximum. For this problem we
assume the graph has at least k nodes.

In order to treat the problem for large k we also define an
approximate version of the problem.

Problem definition (Heaviest-k-Subgraph α-approximation
problem). Given an undirected weighted graph G, an integer
k > 1 and a real number α ≥ 1, we wish to find a subgraph
containing k-nodes and such that the sum of the weights on
its edges times α is greater or equal to the sum of the weights
on the edges of any subgraph of size k.

Problem definition (Top t heavy k-subgraphs problem). Given
an undirected weighted graph G, an integer k > 1, and an
integer t > 0, find at most t disjoint subgraphs containing
k nodes such that the sum of the weights on its edges is
maximum. For this problem we assume the graph has at least
k · t nodes.

Decomposing an unweighted graph into a hierarchical struc-
ture via the core decomposition is a standard operation in any
modern graph-mining toolkit. This decomposition, is based on
a recursive pruning of a vertex of minimum degree and is used
as a subroutine in a large variety of algorithms, in particular
it is related to the problem of finding densest subgraph (in
unweighted graph and without constraints on the number
of nodes in the subgraph) as it leads to a 2-approximation
algorithms. It can be straightforwardly generalized to the
weighted case where we recursive prune a vertex such that
the sum of the weights on its adjacent edges is minimum.

Problem definition (Weighted core decomposition problem).
Given an undirected weighted graph G, we wish to compute
a weighted core decomposition of G.

We will show that an efficient heuristic for the Heaviest-
k-Subgraph problem can be derived from the Weighted core
decomposition. However, this solution has no fixed parameter
approximation guaranteed for our setting.

III. RELATED WORK

Heaviest k-subgraph. Both HkS and DkS (unweighted
version of HkS) problems are NP-hard and no polynomial-
time algorithms with a fixed performance guarantee are
known. In [7] the authors give a polynomial algorithm that
computes a solution within a factor of nα, α < 1

3 , from the
optimum solution for DkS, with the addition of a factor of
O(log n) for HkS. Note that an algorithm that solves the
weighted case will solve the unweighted case without any
additional approximation factor. Asahiro et al. [2] describe a
greedy algorithm for HkS that has an approximation ratio of
O(kn). In [8], using semidefinite programming, the authors get
approximation ratios of k

n for HkS. The state-of-the algorithm
for DkS is due to Bhaskara et al. [3] and gives a O(n

1
4+ε)

approximation guarantee for any ε > 0. In [3], the authors
count selected subgraphs of constant size in G, and use these
counts to find the vertices of the dense subgraph.

Finding the densest subgraph with at most k vertices
(DamkS) or a densest subgraph with at least k vertices
(DalkS) are also NP-hard [13]. Khuller et al.[13] give a 1/2-
approximation algorithm for (DalkS) and show that DamkS
is as hard as DkS within a constant factor. When the constraint
on the number of nodes is removed and the objective is to
maximize the average degree of the nodes in a subgraph,
then the problem becomes the densest subgraph problem. It is
well studied in literature and it can be solved in polynomial
time despite the fact that there is an exponential number of
subgraphs to consider. Goldberg [12] formally defined the
problem in an undirected graph and presented an algorithm
that computes a densest subgraph in O(log(n)) maximum-flow
computations. In [4], Charikar describes a simple heuristic that
has a 2-approximation guarantee.

Event detection. Promising research in this field includes
the work of Angel et al. [1] based on dense subgraph discovery.
The algorithm finds all (possibly overlapping) sub-graphs
that have the density above a certain threshold and presents
these sub-graphs as corresponding to events. There are also
approaches that target a slightly different problem: given an
event, the goal is to keep track of all updates and major
sub-events concerning that event. In [6] the authors use only
non-textual features in order to discover sub-events related to
a given an event. They present a model which is based on
the intuition that users tend to communicate less with each
other while an event is occurring. Using a logistic regression
approach they detect goals during the soccer World Cup of
2010. In [16] tweets are represented as a graph and sub-events
are identified using the notion of graph degeneracy.

IV. ALGORITHMS

A. Branch and Bound Algorithm for HkS

Branch and bound is a well-known method for solving
combinatorial maximization problems. The main idea is to
divide the search space into several branches of computation.
Intuitively, we can think of the whole process as forming a
tree starting from the root which is the set of all possible

solutions, while the children of a node are smaller sets of
solutions. Forming the children of a node is called branching
phase. Each node of the tree is associated to a lower bound
(generally a solution of the problem) and an upper bound,
while if the upper bound of a node in the tree is lower than
the global lower bound (that is, the maximum of the solutions
found so far), the children of the node do not need to be
explored as they would lead to a worse solution, so the branch
can be pruned.

In our approach, the branching phase is based on deciding
whether to add a specific edge (and thus its endpoints) in
the corresponding solution or not. More specifically, if we are
looking for the heaviest subgraph of size k, our branch and
bound algorithm consists of the following.

• We start with the root such that all edges are possibly
here or not. The upper bound is the sum of the

(
k
2

)
heaviest edges, while the associated solution is the empty
subgraph, the lower bound is thus 0.

• Then at each iteration we create two children for the node
with maximum lower bound (i.e. density of the associated
solution). Suppose the node is at depth i in the tree, we
keep the decisions made on the first i−1 edges and create
two children, one where the ith edge is included and one
where it is not.

The lower bound is given by the sum of the weights on the
edges of the subgraph induced by the edges that are included.

Assume the number of nodes in the subgraph induced by
the edges that are included is s. Then the upper bound is given
by the weights of subgraph plus the sum of the next

(
k
2

)
−
(
s
2

)
highest weight edges.

When we add a new edge (u, v) we have to check if both
endpoints are part of the current’s solution vertex list. If they
are not, we add them in the vertex list and we update the
weight of this solution by adding the weight of every possible
edge between u (resp v) and vertices in S. We thus need a
subroutine to check efficiently if two nodes are adjacent or
not.

Checking adjacency efficiently. We initially compute a
core ordering (or degeneracy ordering) of the unweighted
version of the graph. We then keep for each node in the graph
a sorted list of its neighbors having higher core ordering (the
maximum size of such a truncated neighborhood list is thus c,
the core value of the graph). Given 2 nodes x and y (w.l.o.g.
we assume that y has a higher core ordering than x) we can
efficiently check if they are adjacent by checking if y is in the
truncated neighborhood list of x by binary search in O(log(c))
time. Note that this step is in practice the bottleneck of our
algorithm taking about 80% of the time. We were not able
to make this subroutine faster in practice using a hashtable
containing all edges.

The worst case total running time of the process of creating
a child is thus in O(k · log(c) (where c is the core value of
the graph), which is the time to check if u and v belongs to
the neighborhood of the nodes in the solution subgraph (there

are at most k − 1 of them), note that the maximum size of a
neighborhood is n− 1.

We keep forming the children of the node with the higher
lower bound till the branch is pruned. In addition to the
pruning using lower and upper bound, if the number of nodes
in the subgraph exceeds k we also prune the branch. When we
add a new edge (u, v), we have to check for both endpoints if
they belong in the current solution. If they don’t, we add the
weight of the edges between the endpoints of the new edge
(u, v) and the vertices of the current solution. However, if such
an edge (u, x) has a higher ranking than (u, v) (i.e. the weight
of (u, x) is greater or equal to the weight of (u, v)), then we
can prune this solution. Indeed, since we make the decisions
on edges in non-increasing order according to their weight it
means that this edge (u, x) was excluded from the solution, it
thus cannot be added at this step.

A key feature of a branch and bound algorithm is the order
by which the method iterates over the nodes of the branch and
bound tree. This order can be BFS, DFS, based on the lower
bound or on the upper bound of a node. After examining those
different order, we found that examining the nodes according
to the weight of the candidate solutions was the most efficient
one. Hence, every time a child is created by the branch and
bound algorithm, it is added to a heap, whose head is always
the solution of maximum weight.

Intuition behind our method. The intuition behind our
method is that the best solution should contain many edges
of high weight (that is well ranked in non-increasing order of
weight), while possibly containing few edges of low weight.
The method should not explore all edges till the ones of low
weights as those will be added to the solution through forming
the induced subgraph on the edges of high weight.

Branch and bound on nodes. During the branching phase
where we make decisions upon the edges, one might ask if
it would be better to make decisions upon the vertices. After
some experimentation with both approaches, we observed that
branch and bound with edges is more efficient. Indeed, a good
upper bound for the branch and bound with edges is easy to
compute, while we couldn’t find any simple way to do so
for the branch and bound with nodes. In addition, ranking
edges in non-increasing order of weight is rather natural and
it is more probable that the best solution contains edges of
high weight leading to a quicker termination of the algorithm.
While ranking nodes is less natural (even though weighted
degree ordering or weighted-core ordering are possible) and
nodes in the best solutions can be ranked further leading to a
slower termination of the algorithm.

Approximation algorithm for HkS. In order to obtain an
α approximation of the HkS problem, we modify our branch
and bound algorithm in the following way. If at some point,
the current largest upper bound divided by the current best
solution is higher than α, we output the solution. As there is
no other subgraph of size k such that the sum of the edges is
higher than the largest upper bound, we know that our solution

Algorithm 1 Branch and bound
1: Input: A graph G(V,E) and an integer k
2: Output: The heaviest k-subgraph of G(V,E)
3: Let edges be the edge list sorted in non-increasing order

according to the weight
4: For a current BnB node, let S be the list of vertices of

the subgraph, w its weight, b the upper bound and i the
index of the current edge.

5: Initially S ← ∅, w ← 0, i ← 0, b ← sum of the heavier
k(k−1)

2 edges
6: HEAP.insert((S,w, i, b))
7: bestSolution← 0
8: while HEAP is not empty do
9: (S,w, b, i) ← HEAP.pop();

10: if b ≤ bestSolution or |S| > k then
11: Prune current solution
12: else
13: if w > bestSolution then
14: bestSolution← w
15: (S1, w1, b1, i1)← createChild((S,w, b, i) ,1)
16: HEAP.insert((S1, w1, b1, i1))
17: (S0, w0, b0, i0)← createChild((S,w, b, i) ,0)
18: HEAP.insert((S0, w0, b0, i0))
19: return best solution found;

Algorithm 2 Procedure createChild((S,w, b, i), int c)
1: if c = 1 then
2: e← edges[i];
3: Let (u, v) be the endpoints of edge e
4: if u /∈ S then
5: for all x ∈ S do
6: if (u, x) ∈ E then
7: w ← w + (u, x).weight

8: S ← S ∪ {u}
9: if v /∈ S then

10: for all x ∈ S do
11: if (v, x) ∈ E then
12: w ← w + (v, x).weight

13: S ← S ∪ {v}
14: i← i+ 1;
15: Update b;
16: return (S,w, b, i)

is an α-approximation.

Top heavy k-subgraphs. Due to the hardness of the prob-
lem we cannot hope to solve it optimally, so we use a simple
greedy heuristic: we find the heaviest k-subgraph, we remove
all its vertices and their incident edges from the graph and we
iterate on the remaining graph until we have found t subgraphs
or the graph is empty. At the end of the computation, we will
obtain at most t disjoint subgraphs. Note that this heuristic
gives a 1

t -approximation guarantee as the first found heaviest
subgraph is at least as heavy as any subgraph in the optimal

solution containing t subgraphs.

B. Heuristic based on weighted core decomposition

In order to have a basis for comparison, we implement
the greedy heuristic used in [2]. The algorithm is based on
the weighted core decomposition and it consists in repeatedly
removing a vertex with the minimum weighted-degree in
the currently remaining graph until exactly k vertices are
left. We implemented the algorithm using a min-heap as
detail in Algorithm 3, so that its asymptotic running time is
O((m+ n) · log(n)).

Algorithm 3 Weighted core heuristic for DkS
1: for each node u in G do
2: dw(u) ← weighted-degree of u
3: ∆η(u) ← list of neighbors of u and associated edge

weight (v, wu,v)

4: create a min heap HEAP initialized with (u, dw(u)) for
each node u in G

5: while HEAP has more than k elements do
6: u ← HEAP.pop()
7: for each (v, wu,v) ∈ ∆(u) do
8: dw(v) ← dw(v)− wu,v
9: update HEAP with (v, dw(v))

return the k nodes in HEAP

One essential drawback of this algorithm is that it does not
have any fixed parameter approximation guarantee. As proved
in [2], for k < n

3 it has a O(kn) approximation guarantee,
however for our setting k is small (events are described by a
small number of entities, in practice we work with k smaller
than 20), while n is large and thus the approximation guarantee
can be very bad.

Next we show that for any α < 1, we can find a graph where
the ratio between the solution the weighted core heuristic and
the optimal one is smaller than α. This can be easily seen in
Figure 1, for k = 2, we modify the edge weight between u
and v to be an integer δ, satisfying δ > 1

α and we keep a
clique of size (δ + 2) where every edge has unitary weight.
This can be extended also for larger k.

Fig. 1. On this graph for k = 2 the best solution is the subgraph
induced by the vertices u, v with total weight 3. However, the weighted
core decomposition algorithm will exclude first those two vertices since the
contribution of every vertex in the clique is 4 and theirs is 3.

Improving the solution by local search. Note that the
solution given by Algorithm 3 is a stable local optimum in the
sense that adding a node such that the weight of the subgraph
of size k + 1 is maximized and then removing the node such
that the size of the subgraph of size k is maximized will lead
to a solution having the same value as the initial one. However
we can improve the solution by switching a node inside the
subgraph of size k and a node outside the subgraph such that
the weight is maximized, this can be repeated till the solution
becomes a stable local optimum with respect to this switch
operation. This can be done efficiently by considering only
the nodes inside the subgraph and nodes outside the subgraph
having at least one neighbor inside the subgraph. We also add
this technical improvement which does not lead to a better
approximation but gives, in practice, slightly better results.

V. EXPERIMENTS

A. Experimental setup

We collected a set of tweets by means of the Twitter
Streaming API during the months of November and December
2015. The sample of tweets contains only English and French
tweets (language is automatically detected by the Twitter
platform).

We construct graphs from each of the dataset as follows. We
extract nouns from the tweets using the Stanford POS Tagger
2 and also hashtags and we construct a weighted undirected
graph G = (V,E,w), where the set of nodes consists of the
words extracted in the previous step, while there is an edge
between two nodes if the corresponding words co-occur in
at least one tweet, the weight corresponds to the number of
co-occurrences.

We obtain four graphs which are detailed Table I.

Name Nodes Edges
French-November 220 K 2.9 M
French-December 200 K 2.1 M
English-November 2.5 M 4.5 M
English-December 1.8 M 3.1 M

TABLE I
OUR SET OF GRAPHS OF WORDS EXTRACTED FROM TWEETS.

The algorithms were implemented in Java and were run
on a machine under GNU/Linux with 2.39 GHz clock, while
limiting the total amount of memory available to 20 GB.

B. Running time and structural comparisons

Table II shows the running time of our branch and bound
algorithm as well as the one based on weighted core decom-
position on our set of graphs of words extracted from Twitter.
The time of the heuristic based on weighted core does not
vary much with k as it computes the weighted core, improve
the solution using local search and then outputs the last k
nodes we show the average value. As we can see, in most
cases, both algorithms take few seconds for k ≤ 15. However,

2http://nlp.stanford.edu/software/tagger.shtml

as we will see later and in Figure 2, the time of the branch
and bound algorithm explode when k is larger. This can be
explained as when k is large, the probability that the solution
contains many edges of high weight and only few edges of low
weight becomes lower. This shows a limitation of our approach
which is not efficient when k is too large, however for small k
we can find the exact solution efficiently. Note that for event
detection, only small k values are interesting as events are
usually described by a small set of relevant keywords.

Table III shows the sum of the weights on the obtained
subgraph. Our branch and bound algorithm always achieve to
find the optimal solution. We used the value of the solution
of our branch and bound algorithm to compute the ratio of
the solution obtained by the heuristic based on weighted core
and the optimal solution. As we can see the approximation of
the weighted core heuristic is variable: sometimes as good as
0.99, while it can be as bad as 0.67.

Table IV shows the ratio between the number of edges in
the found subgraph of size k and the number of edges in a
clique of size k. As we can see, in all cases except the one
of ”Twitter-fr December” the solution is a clique. This shows
that the structure of those real-world graphs is special and
that, even though we are looking for HkS and not cliques,
designing an algorithm to find a clique of size k and of
maximum weight is a very similar problem on those real-world
graphs. As enumerating cliques can be done efficiently in real-
world graphs [5], [15], a heuristic based on enumerating all
cliques of size k and returning the one of maximum weight
could be considered.

Approximation for larger k. Figure 2 (left) shows the
running time of our exact branch and bound algorithm as a
function of the input k (number of nodes in the subgraph)
for our four datasets. We truncated the curves at 1 hour of
computation. As we can see, within one hour our program
can solve the problem for k = 16 for French-December while
it can go up to k = 36 for English-December. We also show,
Figure 2 (right) the same curves, but for our approximation
branch and bound algorithm. We set the wished approximation
ratio to α = 1.5. This time our algorithm is able to solve the
problem for larger k: within one hour our program computes
a 1.5 approximation for k = 20 for French-December while
it can go up to k = 105 for English December.

C. Top t heavy k-subgraphs

In this section we present the events that we found using
our technique, i.e. computing heavy disjoint subgraphs in
the graphs French-November (Table V) and French-December
(Table VI). Through experimentation we noticed that the most
relevant value for k is 5, meaning that events are usually
described using a few important keywords.

In the month of November the heaviest subgraph corre-
sponds to the terrorist attacks in Paris. Two of the places where
the attacks occurred are mentioned, the concert hall Bataclan
and the stadium Stade de France. Another interesting event
found by our method is a police raid in a Paris suburb, which

Weighted core B&B DkS
networks loading time k = 5, 10 and 20 k = 5 k = 10 k = 15

French-November 0.8s 0.7s 0.5s 0.9s 17s
French-December 0.6s 0.5s 0.9s 1.0s 9m58s
English-November 11s 8.9s 17s 17s 18s
English-December 12s 4.8s 7.5s 7.0s 7.0s

TABLE II
RUNNING TIME COMPARISON.

Weighted core B&B DkS
networks k = 5 k = 10 k = 15 k = 5 k = 10 k = 15

French-November 24669 (0.92) 70528 (0.96) 115341 (0.96) 26824 73432 120419
French-December 18158 (0.95) 22458 (0.67) 36358 (0.81) 19090 33338 45020
English-November 2942467 5836705 (0.99) 8114183 (0.99) 2942467 5913372 8161838
English-December 2386716 5125458 (0.98) 7830637 2386716 5235181 7830637

TABLE III
SUM OF WEIGHTS.

Weighted core B&B DkS
networks k = 5 k = 10 k = 15 k = 5 k = 10 k = 15

French-November 1.0 1.0 0.98 1.0 1.0 0.98
French-December 0.4 0.27 0.44 1.0 0.44 0.3
English-November 1.0 1.0 1.0 1.0 1.0 1.0
English-December 1.0 1.0 1.0 1.0 1.0 1.0

TABLE IV
EDGE DENSITY.

5 10 15 20 25 30 35 40

k

0

500

1000

1500

2000

2500

3000

3500

T
im

e
 i
n
 s

e
co

n
d
s

Exact branch and bound

French-November

French-December

English-November

English-December

20 40 60 80 100

k

0

500

1000

1500

2000

2500

3000

3500

T
im

e
 i
n
 s

e
co

n
d
s

1.5 approximation branch and bound

Fig. 2. Running time of branch and bound algorithm as a function of the input k for our four datasets. (left) exact algorithm. (right) approximation algorithm,
we set the approximation ratio to α = 1.5.

had the objective to find ISIS members responsible for the
terrorist attacks.

In the month of December we have more events related to
the Twitter platform, like advertising services. An interesting
event that we find in this month is connected to the United
Nations Climate Change Conference, COP21. The agreement
did not include gender equality and supporters argued that
the status of women in developing countries makes them
more susceptible to climate change. We can see also that our

technique grouped non-related events together. One possible
solution for alleviating this could be to find the densest
subgraph of at most k vertices, but we leave this to future
work. We note that our method could be improved by using
filtering techniques that have been proposed in literature for
removing common words, one example is using the entropy of
the distribution of word frequencies over time [14]. However,
our goal is to prove that a simple graph mining approach can
give meaningful results for the task of event detection.

Graph Description
familles victimes paris bataclan fusillade The terrorist attack that took place in Paris at the concert hall

Bataclan.
escargophone trecru gameinsight androidgames android A popular android application that posts automatic messages on

social media.
max recherche parisattacks ans rechercheparis People sharing information on missing friends before the release

of the victims names.
france stade direction mtvstars vote Another terrorist attack occurred at a stadium in Paris, Stade

de France. The event is mixed with a popular music con-
test(MTVStars).

minute silence concours follow tirage A minute of silence in the memory of the victims. Additional
unrelated words are contained.

peuple condoléances monde nouveau religion People shared a tweet of the king of Saudi Arabia, which
expressed his condolence and said terrorism does not have a
religion.

salut réponse moment côté buzz Funny videos circulating of Twitter
nation forces fois l’ordre l’effroi People talking about a police raid in a Paris suburb in search of

ISIS members.
potes followers espace ton technique Retweet of service promising to provide followers against a cost.
part infos l’histoire spectateur con Not a clear event.

TABLE V
TOP 10 HEAVY SUBGRAPHS OF SIZE 5 FOR FRENCH-NOVEMBER

Graph Description
direction mtvstars vote votos videomtv2015 Users are voting for a popular music contest, MTVStars.
gameinsight androidgames android nourriture unités Automatic posts of an android application on social media.
escargophone trecru photos l’équipage géants Automatic posts of an android application on social media.
follow concours sort tirage tweet Contests and games are organized by users for their followers.
réponse salut côté moment buzz Funny videos circulating on Twitter
serveur offres webhost hebergement cheaphostingoff Offers for cheap web hosting.
paris travail cop21 offre h/f(homme - man / femme - woman) One topic of discussion during the COP21 was equality between

women and men, as the bad status of women in developing
countries makes them more susceptible to climate change.

unfollowers d’aujourd statistiques semaine mois-ci Retweet of service promising to provide followers against a cost.
2015 regionales2015 2016 missfrance2016 miss Two events: regional elections and Miss France contest.
place chance followers espace potes Retweet of service promising to provide followers against a cost.

TABLE VI
TOP 10 HEAVY SUBGRAPHS OF SIZE 5 FOR FRENCH-DECEMBER

The top subgraphs found starting from the English tweets
all refer to a popular TV show (called MTV), where users
were asked to vote via the Twitter platform. Those results are
perhaps less interesting as they focus on one single popular
event. This shows the current limitations of our approach in
finding interesting events in Twitter. In particular, the diversity
of the results should be improved, while noisy or less relevant
information should be filtered out. However, on data which
is less noisy such as the French tweets our approach delivers
good results showing its potential.

The results presented in Table V and Table VI are obtained
in the following way. We find a heavy subgraph, we remove
its vertices and all edges adjacent to them and we iterate on
the remaining graph until we have found t subgraphs. A good
heuristic for finding the top t heavy k-subgraphs should give
subgraphs which have a large total sum of weights.

In order to compare how well performs (i) the heuristic
based on weighted core decomposition (ii) our exact branch
and bound algorithm and (iii) our approximation branch and
bound algorithm for finding the heaviest t subgraphs, we
compute the top 100 subgraphs having as subroutine one of
the three algorithms (for the approximation we use α = 1.5.
Figure 3 shows the sum of weights of the subgraphs as a
function of the number of subgraphs for the French datasets.
We omit the English datasets as the results are similar. In all
datasets our exact algorithm, as well as our approximation
algorithm for α = 1.5) consistently outperforms the weighted
core decomposition algorithm, so we can conclude that it is
better suited for solving the top t heavy k-subgraphs problem
for small values of k.

10 20 30 40 50 60 70 80 90 100
Number of subgraphs

50000

100000

150000

200000

250000

300000

350000

400000
Su

m
 o

f w
ei

gh
ts

French-November
Weighted core heuristic
Exact branch and bound
1.5 Approximation

10 20 30 40 50 60 70 80 90 100
Number of subgraphs

40000

60000

80000

100000

120000

140000

160000

180000

200000

220000

Su
m

 o
f w

ei
gh

ts

French-December

Fig. 3. Sum of the weights of the top t heavy subgraphs of size 5 as a function of t for our French datasets.

VI. CONCLUSION

We presented a new branch and bound algorithm for solving
the densest k-subgraph problem in weighted graphs. The
branching phase is based on deciding whether to include an
edge in the subgraph or not, edges are examined in non-
increasing order of weight in order to maximize the efficiency
of the algorithm. The pruning phase is two fold: (i) based on
the size of the subgraph and (ii) on the efficient computation
of a tight upper bound.

The algorithm scales to large weighted real-world graphs
containing millions of edges for up to k = 15 or more
depending on the structure of the graph. An approximation
version of our algorithm can scale to larger k. We show that our
algorithm performs better than a state-of-the-art method based
on weighted core decomposition of the graph. In addition, we
showed that our algorithm is able to detect relevant events in
Twitter.

Future work includes improvements of our branch and
bound algorithm using parallel computing, as well as its gen-
eralization to the detection of other kinds of subgraphs. One
possible direction is community detection, where a community
is intuitively defined as a set of nodes that are highly connected
together, but poorly connected to the outside [10]. Another
perspective is in improving the quality of the results for event
detection when dealing with noisy data.

REFERENCES

[1] A. Angel, N. Koudas, N. Sarkas, D. Srivastava, M. Svendsen, and
S. Tirthapura. Dense subgraph maintenance under streaming edge weight
updates for real-time story identification. VLDB Journal, 23(2):175–199,
2014.

[2] Y. Asahiro, K. Iwama, H. Tamaki, and T. Tokuyama. Greedily finding
a dense subgraph. Journal of Algorithms, 34(2):203 – 221, 2000.

[3] A. Bhaskara, M. Charikar, E. Chlamtac, and U. Feige. for Densest k
-Subgraph. Organization, (873):201–210.

[4] M. Charikar. Greedy Approximation Algorithms for Finding Dense
Components in a Graph. Approximation Algorithms for Combinatorial
Optimization, pages 84–95, 2000.

[5] N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms.
SIAM Journal on Computing, 14(1):210–223, 1985.

[6] F. Chierichetti, J. Kleinberg, R. Kumar, M. Mahdian, and S. Pandey.
Event Detection via Communication Pattern Analysis. pages 51–60,
2014.

[7] U. Feige. The Dense k -Subgraph Problem 1 Introduction. 1999.
[8] U. Feige and M. Langberg. Approximation algorithms for maximiza-

tion problems arising in graph partitioning. Journal of Algorithms,
41(2):174–211, 2001.

[9] S. Fortunato. Community detection in graphs. Physics Reports, 486(3-
5):75–174, 2010.

[10] S. Fortunato. Community detection in graphs. Physics reports,
486(3):75–174, 2010.

[11] D. Gibson, R. Kumar, and A. Tomkins. Discovering large dense
subgraphs in massive graphs. International Conference on Very Large
Data Bases (VLDB), pages 721—-732, 2005.

[12] A. V. Goldberg. Finding a maximum density subgraph, 1984.
[13] S. Khuller and B. Saha. On finding dense subgraphs. Icalp, 5555:597–

608, 2009.
[14] R. Long, H. Wang, Y. Chen, O. Jin, and Y. Yu. Towards effective event

detection, tracking and summarization on microblog data. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial In-
telligence and Lecture Notes in Bioinformatics), 6897 LNCS(800):652–
663, 2011.

[15] K. Makino and T. Uno. New algorithms for enumerating all maximal
cliques. In Scandinavian Workshop on Algorithm Theory, pages 260–
272. Springer, 2004.

[16] P. Meladianos, G. Nikolentzos, F. Rousseau, Y. Stavrakas, and M. Vazir-
giannis. Degeneracy-based real-time sub-event detection in twitter
stream. 2015.

[17] M. Osborne and M. Dredze. Facebook , Twitter and Google Plus for
Breaking News: Is There a Winner ? Proceedings of the 8th International
AAAI Conference on Weblogs and Social Media, pages 611–614, 2014.

[18] B. Saha, A. Hoch, S. Khuller, L. Raschid, and X. N. Zhang. Dense
subgraphs with restrictions and applications to gene annotation graphs.
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 6044
LNBI:456–472, 2010.

