
Large Scale Density-friendly Graph Decomposition
via Convex Programming∗

Maximilien Danisch
LTCI, Télécom ParisTech,
Université Paris-Saclay,

75013, Paris, France
danisch@telecom-

paristech.fr

T-H. Hubert Chan†
Department of Computer
Science, The University of

Hong Kong, Hong Kong, China
hubert@cs.hku.hk

Mauro Sozio‡
LTCI, Télécom ParisTech,
Université Paris-Saclay,

75013, Paris, France
sozio@telecom-

paristech.fr

ABSTRACT
Algorithms for finding dense regions in an input graph have
proved to be effective tools in graph mining and data anal-
ysis. Recently, Tatti and Gionis [WWW 2015] presented a
novel graph decomposition (known as the locally-dense de-
composition) that is similar to the well-known k-core decom-
position, with the additional property that its components
are arranged in order of their densities. Such a decompo-
sition provides a valuable tool in graph mining. Unfortu-
nately, their algorithm for computing the exact decomposi-
tion is based on a maximum-flow algorithm which cannot
scale to massive graphs, while the approximate decomposi-
tion defined by the same authors misses several interesting
properties. This calls for scalable algorithms for computing
such a decomposition. In our work, we devise an efficient
algorithm which is able to compute exact locally-dense de-
compositions in real-world graphs containing up to billions
of edges. Moreover, we provide a new definition of approxi-
mate locally-dense decomposition which retains most of the
properties of an exact decomposition, for which we devise an
algorithm that can scale to real-world graphs containing up
to tens of billions of edges. Our algorithm is based on the
classic Frank-Wolfe algorithm which is similar to gradient
descent and can be efficiently implemented in most of the
modern architectures dealing with massive graphs. We pro-
vide a rigorous study of our algorithms and their convergence
rates. We conduct an extensive experimental evaluation on
multi-core architectures showing that our algorithms con-

†This research was partially supported by the Hong Kong
RGC under the grants 17202715 and 17217716.
‡This research was partially supported by French National
Agency (ANR) under project FIELDS (ANR-15-CE23-
0006) and by a Google Faculty Award.
∗This research was partially supported by a grant from
the PROCORE France-Hong Kong Joint Research Scheme
sponsored by the Research Grants Council of Hong Kong
and the Consulate General of France in Hong Kong under
the project F-HKU702/16.

c©2017 International World Wide Web Conference Committee
(IW3C2), published under Creative Commons CC BY 4.0 License.
WWW 2017, April 3–7, 2017, Perth, Australia.
ACM 978-1-4503-4913-0/17/04.
http://dx.doi.org/10.1145/3038912.3052619

.

verge much faster in practice than their worst-case analysis.
Our algorithm is even more efficient for the more specialized
problem of computing a densest subgraph.

1. INTRODUCTION
Algorithms for finding dense regions in an input graph

have proved to be valuable tools in graph mining with ap-
plications in biology [20], finance [16], web mining [21], as
well as real-time story identification [3]. On the other hand,
the well-known k-core decomposition stands out for its sim-
plicity and its ability to unravel the structural organization
of a graph. It has been successfully applied in many con-
texts such as speeding up algorithms [19, 33], finding best
spreaders [27], drawing large graphs [2], bioinformatics [5],
analyzing human brains [23] and team formation [10].

Recently, Tatti and Gionis [38] proposed a novel graph
decomposition, known as the locally-dense graph decomposi-
tion. Such a decomposition boasts similar properties to the
k-core decomposition with the additional property that its
components are nested into one another, with inner compo-
nents having larger density than outer ones. Moreover, the
locally-dense decomposition contains all the so-called locally-
dense subgraphs of the input graph. The locally-dense graph
decomposition provides a valuable tool in graph mining.

Unfortunately, their algorithm for computing the exact
decomposition does not scale to massive graphs, while the
approximate decomposition defined by the same authors may
not contain any non-trivial locally-dense subgraph.

In our work, we devise an efficient algorithm for comput-
ing exact locally-dense decompositions in massive graphs.
Our main algorithm is based on a variant of the classic
Frank-Wolfe algorithm that is similar to gradient descent
and can be efficiently implemented in most of the modern
architectures dealing with massive graphs. We provide a rig-
orous worst-case analysis of its convergence rate. We give a
different definition of approximate decomposition than the
one given in [38]. Our notion of approximation is stronger
in the sense that it computes a non-trivial subset of all
locally-dense subgraphs, while locally-dense subgraphs with
very different densities will still be distinguished. We de-
vise an efficient algorithm for computing an approximate
graph decomposition that, for any ε > 0, computes a (1+ε)-
approximation of the exact decomposition.

We conduct experimental evaluations on real-world graphs
containing up to 25 billion edges, for which our main algo-
rithm exhibits faster convergence rate than the worst-case
analysis. In our experiments, we focus on multi-core archi-

tectures. However, our main algorithm can be efficiently im-
plemented in other well known architectures such as MapRe-
duce and Spark thanks to its simplicity and its fast rate of
convergence on real-world graphs. Our work illustrates the
potential of the Frank-Wolfe algorithm in large scale graph
mining, which perhaps has not been fully exploited, yet.

Related work. Our paper is related to previous work on
graph decompositions as well as finding dense subgraphs.
We review some representative work on these two topics.

In addition to the k-core decomposition, other decompo-
sitions have been studied. The truss decomposition [13, 41]
can be seen as a generalization of the core decomposition to
triangles, since a k-truss is defined as a subgraph in which
each edge is contained in at least (k−2) triangles. The mod-
ular decomposition [14] is a decomposition of a graph into
a hierarchy of subsets of vertices called modules. A module
is defined in the following way: X is a module if, for each
vertex v /∈ X, either every member of X is a non-neighbor
of v or every member of X is a neighbor of v. The nucleus
decomposition [35] is a decomposition of a graph into a hi-
erarchy of dense subgraphs. It is worth to mention the work
in [24, 25], which shows an interesting connection between
load balancing and the density-friendly decomposition.

Dense subgraphs detection has been widely studied [29].
Such a problem aims at finding a subgraph of a given in-
put graph that maximizes some notion of density. The most
common density notion employed in the literature is the av-
erage degree. Due to its popularity, the corresponding prob-
lem of finding a subgraph that maximizes the average de-
gree has been commonly referred to as the densest-subgraph
problem. The densest subgraph can be identified in polyno-
mial time by solving a parametric maxflow problem [22],
while a simple greedy algorithm based on k-core decompo-
sition produces a 1

2
-approximation in linear time [12]. The

densest-subgraph problem has also been studied in stream-
ing and dynamic graphs [6, 18, 8]. Other notions of density
have also been investigated such as the minimum degree den-
sity [37] or density based on the number of triangles [42, 34]
which can be solved in polynomial time. Other definition of
density leading to NP-hard problems have also been investi-
gated such as [4, 31] where an upper bound on the number
of nodes in the graph is enforced as well as quasi-clique de-
tection [1, 39].

The rest of the paper is organized as follows. In Section 2
we introduce the notations, definitions and basic theorems
necessary for the understanding of our work. In Section 3,
we present our algorithms for the computation of the exact
locally-dense decomposition as well as its approximation. In
Section 4, we present our theoretical analysis of the problems
and of our algorithms. We then evaluate the performances
of our algorithms against the state of the art in Section 5.

2. PRELIMINARIES
We consider a weighted undirected graphG = (VG, EG, w),

where w : EG → R+ is a weight function on the edges of G.
We denote by n and m the number of nodes and edges, re-
spectively. We allow G to contain self-loops, i.e., there might
be an edge consisting of one single node. We interpret each
edge e ∈ EG as a subset e ⊂ VG of nodes. For ease of expo-
sition, in this paper, we concentrate on the case that each
edge e contains at most 2 nodes, but our approach can be
readily generalized to hypergraphs (with arbitrary edge car-

dinality). The density of a subgraph H = (VH , EH) in G is

defined as ρG(H) := w(EH)
|VH |

, where w(EH) is the sum of the

weights of the edges with all nodes in EH . A subgraph H
of G is a densest subgraph if and only if H has maximum
density among all subgraphs of G. Observe that a densest
subgraph is a subgraph induced by some subset of nodes.

For a non-empty S ⊆ VG, we define the induced subgraph
G[S] := (S,EG(S), w) by S in G, where EG(S) := {e ∈
EG : e ⊆ S} is the set of edges in G contained in S. For
convenience of notation, given a set of nodes S ⊆ V we
define ρG(S) to be the density of the graph G[S]. A set S is
called a densest subset in G if it induces a densest subgraph
in G. We shall drop the subscripts G and H when the graph
in question are clear from the context. The following fact
is standard for normal graphs, and a proof for hypergraphs
can be readily generalized by [7, Lemma 4.1].

Fact 2.1 The maximal densest subgraph of G is unique and
contains all densest subgraphs of G.

The definition of quotient graph is instrumental in the
definition of our graph decomposition.

Definition 2.2 (Quotient Graph) Given a weighted undi-
rected graph G = (V,E,w), and a subset B ⊆ V , the quotient

graph of G with respect to B is a graph G \ B = (V̂ , Ê, ŵ),
which is defined as follows.

• V̂ := V \B.

• Ê := {e∩ V̂ : e ∈ E, e∩ V̂ 6= ∅}, i.e., every edge e ∈ E
not contained in B contributes towards Ê.
• For e′ ∈ Ê, ŵ(e′) :=

∑
e∈E:e′=e∩V̂ w(e).

For ease of presentation, we give an alternative construc-
tive definition for the locally-dense decomposition as follows.

Definition 2.3 (Diminishingly-Dense Decomposition)
Given a weighted undirected graph G = (V,E,w), we de-
fine the diminishingly-dense decomposition B of G as the
sequence ∅ = B0 (B1 (B2 (· · · (Bk = V as follows.
Initially, we set B0 := ∅ and G0 := G.

For i ≥ 1, if Bi−1 = V , the decomposition is fully de-
fined. Otherwise, let Gi := Gi−1 \Bi−1 = (Vi, Ei, wi) be the
quotient graph of Gi−1 with respect to Bi−1. Let Si be the
maximal densest subset in Gi (with respect to weight wi and
the corresponding density ρi). We define Bi := Bi−1 ∪ Si.

For each i = 1, . . . , k, we denote ri = ρi(Si). Moreover,
we define the maximal density vector rG ∈ RV such that if
u ∈ Si, then rG(u) := ri.

The motivation for the name of the decomposition is given
by Lemma 2.7 and 2.8. Similarly we refer to the reverse
of the sequence Bk, Bk−1, . . . , B0 as the increasingly-dense
decomposition. We shall see in Section 2.1 that Definition 2.3
is equivalent to the locally-dense decomposition given in [38].
The main problem in this paper is as follows.

Problem Definition (Diminishingly-Dense Decomposition
Problem). Given a graphG = (V,E,w), find its diminishingly-
dense decomposition ∅ = B0 (B1 (B2 (· · · (Bk = V .

In addition to finding the exact decomposition, we also
consider approximate diminishingly-dense decomposition. To
describe the approximate version formally, we use the notion
additional density [38].

Definition 2.4 (Additional Density) Given subsets T and
non-empty S such that S is not contained in T , the addi-
tional density1 of S with respect to T is defined as

ρ(S|T) := w(E(S∪T)\E(T))
|S\T | .

Definition 2.5 (Approximate Decomposition) Given a
graph G = (V,E,w), suppose ∅ = B0 (B1 (B2 (· · · (
Bk = V is the diminishingly-dense decomposition of G. Then,
for ε ≥ 0, a chain of subsets ∅ = C0 (C1 (C2 (· · · (
Cl = V , where l ≤ k, is an ε-approximate diminishingly-
dense decomposition, if the following holds.

1. {Ci} is a subsequence of {Bi}, and
2. for each 1 ≤ i ≤ l, for all T such that Ci−1 (T ,
ρ(T |Ci−1) ≤ (1 + ε) · ρ(Ci|Ci−1).

Observing the following fact, one can show that the only
0-approximate decomposition is exactly the diminishingly-
dense decomposition.

Fact 2.6 (Relating Additional Densities) Suppose the

quotient graph G\B = (V̂ , Ê, ŵ) has the corresponding den-

sity function ρ̂. Then, for disjoint subsets X and Y of V̂ ,
we have ρ(X|B ∪ Y) = ρ̂(X|Y).

2.1 Properties of Decompositions
An important property of the decomposition in Defini-

tion 2.3 is that the additional densities along the chain is
strictly decreasing.

Lemma 2.7 (Diminishing Additional Densities) In the
diminishingly-dense decomposition in Definition 2.3, if Bi (
V , then ri > ri+1.

Proof. Suppose on the contrary ri ≤ ri+1, i.e., there ex-
ists a non-empty subset X ⊆ Vi+1 such that ρi+1(X) = ri+1.
Recall that Si is the maximal densest subset in Gi. Sup-
pose we now consider the density of Si ∪X in Gi. Observe
that the additional contribution of edge weights due to X is
ρi+1(X) · |X|. Hence, we have wi(Si ∪X) = ri · |Si|+ ri+1 ·
|X| ≥ ri · |Si ∪X|. Therefore, ρi(Si ∪X) ≥ ri, contradicting
the maximality of Si.

Lemma 2.8 shows that the diminishingly-dense decompo-
sition consists of nested subgraphs with outer subgraph hav-
ing lower densities than inner subgraphs.

Lemma 2.8 (Diminishing Densities) In the diminishingly-
dense decomposition in Definition 2.3, if Bi (V , then
ρ(Bi) > ρ(Bi+1).

Proof. We have ρ(Bi) =
j=i−1∑
j=0

|Bj+1\Bj |
|Bi|

· rj+1 > ri+1,

where the latter inequality follows from the fact that ρ(Bi)
can be expressed as a weighted average of quantities all
strictly larger than ri+1. On the other hand, ρ(Bi+1) =
ρ(Bi)·|Bi|+ri+1·|Bi+1\Bi|

|Bi+1|
< ρ(Bi) (as ri+1 < ρ(Bi)).

We next show that our graph decomposition in Defini-
tion 2.3 is equivalent to the locally-dense decomposition de-
fined in [38].

1In [38], they use d(S, T) to denote ρ(S|T).

Definition 2.9 (Locally Dense Subset) A non-empty
W ⊆ V is locally dense if for all X ⊆ W and non-empty Y
disjoint from W , ρ(X|W \X) > ρ(Y |W).

It is shown in [38] that for any two locally dense S and
T , then either S ⊆ T or T ⊆ S. The same proof gener-
alizes readily to hypergraphs. Therefore, the locally-dense
decomposition can be defined as follows.

Definition 2.10 Given a graph G, its locally-dense decom-
position is the (unique) maximal chain of locally dense sub-
sets: B1 (B2 (· · · (Bk = V .

The purpose of the following lemmas is to show that the
diminishingly-dense decomposition gives a maximal chain
of locally dense subsets, which must also be the (unique)
locally-dense decomposition. The proofs repeatedly apply
the definition of additional density. Because of limited space,
the proof of Lemma 2.11 is omitted.

Lemma 2.11 (Diminishingly-Dense Decomposition is
Locally Dense) Each Bi in the diminishingly-dense decom-
position is locally dense.

Lemma 2.12 (The Diminishingly-Dense Decomposi-
tion is a Maximal Locally-Dense Chain) In the
diminishingly-dense decomposition, for all Bi (X (Bi+1,
the subset X is not locally dense.

Proof. Suppose the contrary is true. Then, consider the
non-empty sets S := X \ Bi (Si+1 and Y := Bi+1 \
X (Si+1. We next consider the weight of the edges E′

in Gi+1 that are totally contained in Si+1. Then, we have
wi+1(E′) = ρi+1 · |Si+1|. We partition E′ into E1 and E2,
where E1 is the set of edges totally contained in S and
E2 := E′ \ E1.

We have wi+1(E1) = ρi+1(S) · |S| = ρ(S|Bi) · |S|, where
the last equality follows from Fact 2.6.

On the other hand, wi+1(E2) = ρ(Y |X) · |Y |. Hence, it
follows that ρ(S|Bi) · |S|+ ρ(Y |X) · |Y | = ρi+1 · (|S|+ |Y |).
Since Si+1 is the maximal densest subset in Gi+1, it follows
that ρ(S|Bi) ≤ ri+1, which implies that ρ(Y |X) ≥ ri+1.

Therefore, we have ρ(S|X\S) = ρ(S|Bi) ≤ ρ(Y |X), which
means X is not locally dense.

Corollary 2.13 (Equivalence of Decompositions) The
diminishingly-dense decomposition is equivalent to the locally-
dense decomposition. Hence, from now on, we simply refer
to either notion as the (exact) decomposition.

3. ALGORITHMS
The main idea of our algorithms is to compute (or ap-

proximate) the maximal density vector rG in Definition 2.3,
from which the decomposition can be recovered by sorting
the nodes in non-increasing order on the coordinates of rG.
Auxiliary Vector. We give a useful view on the density
vector. We can imagine that each edge e ∈ E distributes its
weight we among the nodes contained in e. This can be cap-

tured by an auxiliary vector α in D(G) := {α ∈ R
∑
e∈E |e|

+ :
∀e ∈ E,

∑
u∈e α

e
u = we}, and in particular, αeu is the weight

received by node u from edge e. Indeed, our algorithms
maintain such an auxiliary vector and enforce the follow-
ing invariant relating the density vector r ∈ RV with the
auxiliary vector in α ∈ D(G).

Invariant Pair. We say that (r ∈ RV+ , α ∈ D(G)) is an
invariant pair, if for all u ∈ V , r(u) =

∑
e∈E:u∈e α

e
u.

We give our subroutines and their intuition in this section.
Their analysis will be given in Section 4.

3.1 Frank-Wolfe Based Algorithm
The intuition is that in a densest subset S in graph G, it

is possible for each edge e ∈ E(S) to distribute its weight
among its own nodes such that the total weight received

by each node in S is exactly the density ρ(S) = w(E(S))
|S| .

Moreover, in calculating the density of S, edges that are cut
by S do not contribute their weights to any node in S.

This suggests a general framework for an iterative algo-
rithm, which maintains the invariant between the density
vector r ∈ RV+ and the auxiliary vector α ∈ D(G). In each
iteration of Algorithm 1, each edge e ∈ E attempts to dis-
tribute its weight we towards a node x ∈ e whose current
density r(x) is minimum among the nodes in e. The algo-
rithm is highly parallelizable over work performed per edge
and per node.

Algorithm 1 Frank-Wolfe Based Algorithm

1: function Frank-Wolfe(G = (V,E,w), T ∈ Z+)
2: for each e = uv in E in parallel do
3: αeu

(0), αev
(0) ← we

2

4: for each u ∈ V in parallel do
5: r(0)(u)←

∑
e∈E:u∈e α

e
u

(0)

6: for each iteration t = 1, . . . , T do
7: γt ← 2

t+2
8: for each e in E in parallel do
9: x← arg minv∈e r

(t−1)(v)
10: for each u ∈ e do
11: α̂eu ← we, if u = x and 0 otherwise.

12: α(t) ← (1− γt) · α(t−1) + γt · α̂
13: for each u ∈ V in parallel do
14: r(t)(u)←

∑
e∈E:u∈e α

e
u

(t)

15: return (α(t), r(t))

In Section 4, we will show that Algorithm 1 is in fact
a variant of the Frank-Wolfe algorithm described in [26],
which converges to an optimum solution of a carefully de-
fined constrained convex program. We will show that in an
optimal solution, the density vector must be the maximal
density vector rG in Definition 2.3. However, the iterative
algorithm might produce solutions that approach an optimal
solution without ever exactly attaining it. Hence, we need
other subroutines to recover the exact or an approximate
decomposition when the current solution is “good” enough.

3.2 Tentative Graph Decomposition
Even though we derive theoretical convergence rates in

Section 4, in practice various heuristics can help us to re-
cover the decomposition faster. Our heuristic consists of
computing a tentative decomposition starting from the den-
sity vector r ∈ RV+ produced by the Frank-Wolfe based algo-
rithm. The quality of such a decomposition is then verified
in Sections 3.3 and 3.4. Such a tentative decomposition is
computed as follows.

We first sort the nodes according to the density vector r:
r(u1) ≥ r(u2) ≥ · · · ≥ r(un). For each 1 ≤ i ≤ n, define
yi :=

∑
e∈E:i=max{j:uj∈e} we, i.e., the sum of the weights of

edges that contain ui as the node with the largest index. As
observed in [11], the PAVA algorithm can be employed to
compute a solution for the following problem.

For each 1 ≤ j ≤ n, compute the maximum m(j) ≥ j such
that 1

mj−j+1

∑mj
k=j yk is maximized. The PAVA algorithm

requires O(n) time [40] in total. The m(j)’s computed by
PAVA define a partition [p1, p2−1], [p2, p3−1], . . . , [pl, pl+1]
of [1, n], where p1 = 1, pl+1 = n, while pj+1−1 = m(pj). Let
Sj be the set containing all nodes us with s ∈ [pj , pj+1 − 1],
j = 1, . . . , l. From the partition (S1, S2, . . . , Sl), for each

1 ≤ j ≤ l, a candidate subset B̂i := ∪ij=1Sj can be formed
to be verified in the next step. We refer to this subroutine
as TryDecompose(G = (V,E,w), r ∈ RV+).

3.3 Verification of the Graph Decomposition
We next give a subroutine that verifies whether a candi-

date subset B appears in the chain of the exact decompo-
sition of the given graph G. Our subroutine is based on a
characterization in terms of stable subsets defined as follows.

Definition 3.1 (Stable Subset) A non-empty subset B ⊆
V is stable with respect to the invariant pair (r ∈ RV+ , α ∈
D(G)), if the following conditions hold.

(a) For all u ∈ B and v /∈ B, r(u) > r(v).
(b) For all e ∈ E such that e intersects both B and V \B,

αeu = 0, ∀u ∈ e ∩B.

In Lemma 4.11 of Section 4, we prove that if B is stable
with respect to some pair (r, α), then B appears in the chain
of the exact decomposition. This allows us to design the ver-
ification subroutine illustrated in Algorithm 2. Then, given
a sequence B1 ⊆ B2, . . . ,⊆ Bl we can obtain a subsequence
of the exact decomposition as follows. Starting from B1 we
verify by means of Algorithm 2 whether such a subset is sta-
ble. If this is the case, B1 is included in the subsequence,
while for each edge e = uv with u in B1 and v in V \ B1,
we set αeu = 0 and αev = we. Otherwise, B1 is not included
in the subsequence. We iterate those steps for the rest of
the Bi’s while processing them in the order given by the
sequence. We denote this subroutine by ExtractStable-
Subsets(G,B1, . . . , Bl, r, α).

Algorithm 2 Verify Stable Subsets

1: function IsStable(G = (V,E,w), B ⊆ V , α ∈ D(G))
2: α̂← α
3: for all e = uv such that u ∈ B, v ∈ V \B do
4: α̂eu ← 0, α̂ev ← we
5: for all u ∈ V do
6: r̂(u)←

∑
e∈E:u∈e α̂

e
u

7: if ∀u ∈ B, v ∈ V \B, r̂(u) > r̂(v) then
8: return Success
9: return Fail

3.4 Estimating the Decomposition Error
Given a graph decomposition B1, . . . , Bl, where each of

the Bi’s is a stable subset, we develop an algorithm for
computing an upper bound on the error of the decompo-
sition (with respect to the exact decomposition), as defined
in Definition 2.5. Given a graph G = (V,E,w) and an in-
variant pair (r ∈ RV+ , α ∈ D(G)), Fact 4.1 states that the
maximum coordinate rmax := maxu∈Bi\Bi−1

r(u) gives an

upper bound on the densest subgraph in G \ Bi−1. This
suggests the following subroutine. For each Bi, i = 1, . . . , l
let rmax

i be the maximum value in {r(v)|v ∈ Bi \ Bi−1}.
The maximum value

rmax
i

ρG\Bi−1
(Bi)
− 1 among all i = 1, . . . , l

gives then an upper bound on the error of the approximate
decomposition. We refer to this subroutine as EstimateEr-
ror(G,B1, . . . , Bl, r ∈ R+).

Such a subroutine is used as stopping condition to de-
termine whether the current decomposition satisfies the re-
quired approximation guarantee.

3.5 Approximate and Exact Decomposition
We now have all the ingredients to compute both an ap-

proximate and an exact graph decomposition. The algo-
rithm for computing an approximate decomposition receives
in input a parameter ε > 0 specifying the required ap-
proximation guarantee. Our Frank-Wolfe based algorithm
(Algorithm 1) is then executed for T iterations, where T
is specified in input. Then in turn TryDecompose and
ExtractStableSubsets are executed, so as to compute a
graph decomposition of the input graph. The error of the
approximate decomposition is then evaluated by means of
EstimateError. If such an error is small enough the algo-
rithm terminates, otherwise, the previous steps are iterated
until the required approximation guarantee is obtained. An
exact decomposition can then be obtained by running the
maximum flow algorithm presented in [38] in parallel for
each locally dense subgraph in the approximate decomposi-
tion 2. We observe that the former steps are crucial when
computing an exact decomposition, in that, they allow a
parallel computation of the maximum flow algorithm on rel-
atively small subgraphs of the input graph. A pseudocode
of our algorithm is shown in Algorithm 3.

Algorithm 3 Approximate/Exact Decomposition

1: Input: G = (V,E,w), ε ∈ R+, T ∈ Z+

2: Output: The exact/approximate decomposition of G
3: repeat
4: (α, r)← Frank-Wolfe(G,T)
5: B ← TryDecompose (G, r)
6: B ← ExtractStableSubsets (G,B, r, α)
7: δ ← EstimateError (G,B, r)
8: until δ > ε
9: if the exact decomposition is required then

10: B ← further decomposition of B by running the max.
flow algorithm in [38] in parallel for each set Bi+1 \Bi.

11: return B

4. ANALYSIS
We analyze the subroutines given in Section 3 and prove

their correctness. Our invariant pair (r, α), where r ∈ RV+
and α ∈ D(G) := {α ∈ R

∑
e∈E |e|

+ : ∀e ∈ E,
∑
u∈e α

e
u = we},

is inspired from the Charikar’s LP relaxation for densest
subgraphs [12].

2More precisely, the maximum flow algorithm proposed
in [38] must be adapted so as to deal with self-loops, which
does not pose any particular issue.

LP(G) max
∑
e∈E

wexe

s.t. xe ≤ yu, ∀u ∈ e∑
u∈V

yu = 1,

xe, yu ≥ 0, ∀u ∈ V, e ∈ E
The dual of LP(G) can be formulated as

DP(G) min ρ

s.t. ρ ≥
∑
e:u∈e

αeu, ∀u ∈ V

∑
u∈e

αeu ≥ we, ∀e ∈ E

αeu ≥ 0, ∀u ∈ e ∈ E

Then, LP duality gives the following fact.

Fact 4.1 Suppose (r, α) is an invariant pair for the graph
G = (V,E,w). Then, the maximum coordinate of r gives an
upper bound of the maximum density of a subset in V .

Convex Program. The intuition of our subroutines is that
each edge e ∈ E tries to distribute its weight among the
nodes it contains such that the total weights received by the
nodes are as even as possible. This suggests that we consider
the objective function QG(α) :=

∑
u∈V r(u)2, where (r, α)

is an invariant pair, i.e., r(u) =
∑
e∈E:u∈e α

e
u. Define the

convex program CP(G) := min{QG(α) : α ∈ D(G)}.
We analyze the correctness and the convergence rate of

our algorithms in Section 3 by showing the following.
1. If α ∈ D(G) is an optimum solution for CP(G), then

the density vector r ∈ RV+ induced from the invariant
is exactly the maximal density vector rG from Defini-
tion 2.3.

2. Our iterative Algorithm 1 is essentially the variant
of Frank-Wolfe algorithm described in [26] applied to
CP(G). Hence, theoretical convergence rates can read-
ily be deduced.

3. Stable subsets correspond to subsets that appear in
the exact decomposition.

4.1 Properties of an Optimal Solution of CP(G)

The collection of the level sets of a vector r ∈ RV is defined
as {Sρ : ∃u ∈ V, r(u) = ρ}, where each level set is Sρ := {u ∈
V : r(u) ≥ ρ}.

Lemma 4.2 (Stable Level Sets) Suppose an optimal so-
lution α of CP(G) induces the density vector r ∈ RV+ via the
invariant. Then, each level set of r is stable with respect
to α.

Proof. It suffices to prove that if there exists u, v ∈ e ∈
E such that r(u) > r(v), then αeu = 0. Otherwise, there
exists ε > 0 such that we could decrease αeu by ε and increase
αev by ε to strictly decrease the objective function.

Lemma 4.3 (Uniform Stable Subset) Suppose that a
non-empty S ⊆ V is stable with respect to some α ∈ D(G).
Suppose further that there is some value ρ ∈ R such that for

all u ∈ S, rα(u) = ρ. Then, S is the maximal densest subset
in G and has density ρ.

Proof. Under the feasible dual α, the nodes in S receive
the maximum rα values, since S is stable. Hence, by defini-
tion of DP(G), the objective value of α is ρ.

Moreover, since S is stable, the weight rα received by
nodes in S all comes from edges in E(S). Therefore, it

follows that the density ρ(S) = w(E(S))
|S| = ρ. Since the

subset S corresponds to a feasible primal solution in LP(G)
with objective value ρ(S) = ρ, it follows that ρ is the optimal
value for both LP(G) and DP(G). Hence, S is a densest
subset in G, and it suffices to prove that it is the maximal
densest subset.

Suppose there exists a non-empty B disjoint from S such
that S ∪ B is also a densest subset. Consider the quotient

graph Ĝ := G \ S with density ρ̂. Since ρ(S ∪ B) = ρ, we

have ρ(B|S) = ρ̂(B) = ρ. This means LP(Ĝ) has a feasible
solution with objective value at least ρ.

On the other hand, since S is stable with respect to α, all
edges that intersect both S and V \ S have all their weights
distributed to V \ S. Hence, α ∈ D(G) naturally induces

α̂ ∈ D(Ĝ) such that for all u ∈ V \ S, rα(u) = rα̂(u) < ρ.

This means DP(Ĝ) has a feasible dual with objective value
strictly less than ρ. This contradicts weak duality, and hence
we conclude that S must be the maximal densest subset
in G.

Lemmas 4.2 and 4.3 imply that an optimal solution α
induces a density vector r whose level set corresponding to
the maximum coordinate is the maximal densest subset inG.
By an induction argument that applies Lemmas 4.2 and 4.3
repeatedly to the sequence of quotient graphs, we can obtain
the following corollary.

Corollary 4.4 (Exact Decomposition) Suppose an op-
timal solution α of CP(G) induces the density vector r ∈ RV+
via the invariant. Then, the level sets of r give the exact de-
composition of G, and r agrees with the local-maximal den-
sities rG in Definition 2.3.

4.2 Frank-Wolfe Algorithm
We summarize the Frank-Wolfe algorithm described in [26],

which solves a convex program minQ(α) subject to α ∈ D,
where Q is twice differentiable and D is a compact convex
set in some Euclidean space. The algorithm is an iterative
method similar to gradient descent, where we denote ∇Q as
the gradient of Q.

Algorithm 4 Frank-Wolfe Algorithm on function Q and
feasible set D
1: function Frank-Wolfe(Q,D)

2: Set initial α(0) ∈ D arbitrarily.
3: for each iteration t = 1, . . . , T do
4: γt ← 2

t+2

5: α̂← arg minα∈D 〈α,∇Q(α(t−1))〉
6: α(t) ← (1− γt) · α(t−1) + γt · α̂
7: return α(t)

The following lemma shows that our iterative Algorithm 1
is actually a realization of Algorithm 4 applied to our objec-
tive function QG and feasible set D(G).

Lemma 4.5 Lines (8) to (11) of Algorithm 1 implement
line (5) in Algorithm 4.

Proof. Line (5) in Algorithm 4 solves the following prob-
lem. Given α ∈ D(G), find α̂ ∈ D to minimize 〈α̂,∇Q(α)〉 =
2
∑
e∈E

∑
u∈e α̂

e
u · r(u), where r ∈ RV+ is induced by α via

the invariant.
We can consider each edge e ∈ E independently because

the feasible set D(G) places a constraint
∑
u∈e α̂

e
u = we on

each edge e ∈ E. Hence, to minimize
∑
u∈e α̂

e
u · r(u), edge

e should distribute its weight we entirely to a vertex x ∈ e
having minimum r(x). This is achieved precisely by lines
(8) to (11) of Algorithm 1.

4.3 Rate of Convergence
After establishing that Algorithm 1 is a realization of Al-

gorithm 4 in Lemma 4.5, we can use previous convergence
analysis of the Frank-Wolfe algorithm [26].

The convergence rate of Algorithm 4 can be described by a
constant CQ := 1

2
Diam(D)2 supα∈D ‖∇2Q(α)‖2, where ∇2Q

is the Hessian and ‖ · ‖2 is the spectral norm of a matrix.

Theorem 4.6 (Convergence Rate of Frank-Wolfe [26])
Suppose α∗ ∈ D is an optimal solution. Then, for all t ≥ 1,

Q(α(t))−Q(α∗) ≤ 2CQ
t+2

.

Lemmas 4.7 and 4.8 are the results of some straightfor-
ward computation that we omit here.

Lemma 4.7 (Bounding CQ) For a graph G = (V,E,w)
with maximum node degree ∆ (where the degree of a node
is the number of edges that contain it), we have the corre-
sponding CQG ≤ 2∆

∑
e∈E w

2
e .

Lemma 4.8 (Error in r implies Error in Q) Suppose
α ∈ D induces r such that ε := ‖r− r∗‖2, where r∗ := rG is
induced by an optimal α∗. Then, Q(α)−Q(α∗) ≥ ε2.

The following corollary concludes the proof of the rate of
convergence of Algorithm 1.

Corollary 4.9 (Convergence of Parallel Algorithm.)
Suppose ∆ is the maximum degree of a node in G. In Algo-

rithm 1, for t >
4∆

∑
e∈E w

2
e

ε2
, we have ‖r(t) − rG‖2 ≤ ε.

4.4 Characterization of Locally-Dense Subsets
The following Lemma 4.10 (statement a) is needed to es-

tablish the correctness of EstimateError in Section 3.4,
while Lemma 4.11 proves the correctness of ExtractSta-
bleSubsets in Section 3.3.

Lemma 4.10 Suppose α ∈ D(G) is a feasible solution to
CP(G). Then, the density vector rG satisfies the following:

(a) maxu∈V r
α(u) ≥ maxu∈V r

G(u).
(b) minu∈V r

α(u) ≤ minu∈V r
G(u).

Proof. We have that maxu∈V r
G(u) = r1. From the fact

that
∑
u∈B1

rα(u)
|B1|

≥ ŵ(Ê1)
|B1|

= r1, statement (a) follows.

Similarly, minu∈V r
G(u) = rk and

∑
u∈V \Bk−1

rα(u)
|V \Bk−1|

≤
ŵ(Êk)
|V \Bk−1|

= rk, from which statement (b) follows.

networks source n m

LiveJournal [30] 4,036,538 34,681,189
Wikipedia [32] 2,080,370 42,336,692

Orkut [30] 3,072,627 117,185,083
Twitter [28] 52,579,683 1,614,106,500

Friendster [30] 124,836,180 1,806,067,135
gsh-2015 [9] 988,490,691 25,690,705,119

Table 1: Our set of large graphs.

Lemma 4.11 (Stable Subset is Locally-Dense) Suppose
non-empty B ⊆ V is stable with respect to some feasible
α ∈ D(G). Then, B is locally-dense in G, i.e., B is one of
the subsets in the diminishingly-dense decomposition.

Proof. Suppose that a subset B is stable with respect
to some α ∈ D(G). Because of Corollary 4.4, it suffices to
prove that for all u ∈ B and v /∈ B, rG(u) > rG(v).

Define the induced subgraph G1 := G[B] and the quotient
graph G2 := G \ B. Since B is stable with respect to α, α
naturally induces α1 ∈ D(G1) and α2 ∈ D(G2), and we have
for all u ∈ B and v /∈ B, rα1(u) > rα2(v).

Suppose α∗1 ∈ D(G1) and α∗2 ∈ D(G2) are optimal solu-
tions for CP(G1) and CP(G2), respectively. By Lemma 4.10,

for all u ∈ B, rα
∗
1 (u) ≥ minx∈B r

α1(x), and for all v /∈
B, maxx/∈B r

α2(x) ≥ rα
∗
2 (v), which implies that rα

∗
1 (u) >

rα
∗
2 (v).
Therefore, α∗1 and α∗2 can be naturally combined to give

an optimal solution α∗ ∈ D(G) for CP(G). Hence, we have
for all u ∈ B and v /∈ B, rG(u) > rG(v), as required.

5. EXPERIMENTS
In our experimental evaluation, we consider six large real-

world graphs containing up to 25 billion edges. Table 1
reports for each such a graph the statistics and the source
from which the graph has been obtained. In all cases, di-
rectionality is ignored. We implemented our algorithms in
C++, while employing openMP [15] for multi-threading3.
For computing the maximum flow, we use the implemen-
tation of the Boykov-Kolmogorov available in the boost li-
brary [36] (as in [38]). This is done after our algorithm par-
titions the input graph in “sufficiently small” stable subsets.
The maximum flow algorithm can then be run in parallel
on each such stable subsets. We evaluate our algorithms
against the algorithm developed in [38], while using their
C++ implementation available on the web page of the au-
thors. All codes are compiled using the -O3 optimization
level. The experiments are carried out on a linux machine
being equipped with 2 processors Intel Xeon CPU E5-2660
@ 2.60 GHz with 10 cores split in 2 threads each (a total of
40 threads), as well as 64G of RAM DDR4 2133 MHz. Un-
less otherwise specified, we employ 10 threads for running
our Frank-Wolfe-based algorithm. In our experiments, we
consider the asynchronous version of the Frank-Wolfe algo-
rithm (where the α’s can be modifed in any arbitrary order)
which turns out to be more efficient in practice than the syn-
chronous version. The fact that asynchronous versions are in
practice more efficient than synchronous versions has been
investigated for other related problems such as Belief Prop-

3Our code is publicly available at
https://github.com/maxdan94/Density-Friendly.

agation [17]. We defer to future work a theoretical analysis
of this fact for our problem.

For the largest network gsh-2015, we use another machine
with very similar specifications. The only difference is that
such a machine is equipped with 512G of RAM so that such
a large graph can fit into main memory. Our goal in this case
is to study the convergence of the algorithm and in particular
the number of iterations required for our Frank-Wolfe-based
algorithm to converge when such a large graph is considered.
We defer to future work an evaluation of our algorithm when
the input graph does not fit into main memory.

5.1 Rate of Convergence
We start by studying the rate of convergence of our Frank-

Wolfe-based algorithm (Algorithm 1). In particular, we com-
pare the rate of convergence of the algorithm on real-world
graphs with the worst-case analysis provided in Corollary 4.9.
This is illustrated in Figure 1 (left). Such a figure shows for
each iteration t the L2 norm of the difference between the
maximal density vector rG (computed at the end of Algo-

rithm 3 (exact version)) and the vector r(t) computed at
iteration t. Different datasets are depicted with different
colors. Dashed lines represent the upper bound on the num-
ber of iterations provided in Corollary 4.9, while solid lines
refer to the actual experiments on real-world graphs. Note
that for gsh-2015 we only show the dashed lines as the exact
decomposition could not be obtained for this graph.

We observe that our Frank-Wolfe-based algorithm con-
verges much faster than its worst-case analysis. In the next
sections, we show that the exact decomposition can already
be obtained after approximately 500 iterations.

5.2 Approximate Decomposition
We evaluate the error in the approximate decomposition

computed by our algorithm as a function of the number of
iterations. As the exact decomposition is not known by our
algorithm, we estimate the error in the approximate decom-
position by means of EstimateError in Section 3.4. Fig-
ure 1 (middle) illustrates this upper bound on the error ε, as
defined in Definition 2.5, as a function of the number of iter-
ations. As we can compute the exact decompositions for all
our datasets except gsh-2015, it is possible for those datasets
to measure the actual error on the decomposition as a func-
tion of the number of iterations, which is shown in Figure 1
(right). In particular, the latter figure shows that approx-
imately 400 iterations suffice to achieve a 0.1-approximate
decompositions on all datasets. It turns out, therefore, that
the results shown in Figure 1 are rather conservative.

5.3 Comparison
In this section, we evaluate the running time of our algo-

rithm as well as the error in the approximate decomposition,
while comparing it against the algorithms presented in [38].
We run 500 iterations of our Frank-Wolfe based algorithm
which in our experiments suffice to compute an exact decom-
position for all our networks except gsh-2015. We report its
total running time for all our networks. We then measure the
error ε in the approximate decomposition (as defined in Def-
inition 2.5) obtained after 500 iterations (without running
the maximum flow algorithm) and report both the error and
the running time. Table 2 shows the total running time of
our approximation algorithm, our exact algorithm as well

https://github.com/maxdan94/Density-Friendly

100 101 102 103

Number of iterations

10−1

100

101

102

103

104

105

106

107

108

109

1010
||r

(t
)
−
rG
|| 2

LiveJournal
Wikipedia
Orkut
Twitter
Friendster
gsh-2015

100 101 102 103

Number of iterations

10−4

10−3

10−2

10−1

100

101

102

103

104

105

106

U
pp

er
bo

un
d

on
th

e
de

co
m

po
si

tio
n

er
ro

r LiveJournal
Wikipedia
Orkut
Twitter
Friendster
gsh-2015

100 101 102 103

Number of iterations

10−5

10−4

10−3

10−2

10−1

100

101

102

A
ct

ua
ld

ec
om

po
si

tio
n

er
ro

r

LiveJournal
Wikipedia
Orkut
Twitter
Friendster

Figure 1: (left) ||r(t) − rG||2 as a function of the number iterations, dashed lines represent the upper bound
provided in Corollary 4.9. (middle) Upper bound and (right) actual error of the approximate decomposition
as a function of the number of iterations.

Networks FW TD ESS MF

LiveJournal 1m43s 14s 28s 10s
Wikipedia 1m36s 13s 13s 2s

Orkut 7m33s 47s 1m31s 2m47s
Twitter 1h44m34s 15m29s 1h1m27s 1h31m7s

Friendster 2h20m35s 16m47s 1h7m36s 1h54m39s

Table 3: Running time for each building block of our
main algorithm. Our Frank-Wolfe based algorithm
is run for 500 iterations.

as the exact and approximation algorithm developed in [38],
denoted as TG15 (from the initials of the authors).

We can see that our exact algorithm is approximately four
times as fast as TG15 on LiveJournal, Wikipedia and Orkut,
while TG15 fails to run on the largest graphs. It turns out
that TG15 requires a large amount of memory due to large
number of variables which are required in the maximum flow
computation. As a result, when TG15 is executed on Twit-
ter or Friendster it runs out of memory after a few hours of
computation. In contrast, our algorithm is able to compute
an exact decomposition for these two networks within a few
hours. Observe that one of the advantages of our exact al-
gorithm lies on the fact that it computes a maximum flow
algorithm on much smaller subgraphs (on the subgraphs of
G \ Bi−1 induced by Bi \ Bi−1 computed in the previous
steps of our algorithm). Table 2 reports also the error in
the approximate decomposition computed by our algorithm
without running the maximum flow algorithm. We can see
that the error is very small, therefore, the computation of
the maximum flow can be avoided if one is content with a
good approximation of the exact decomposition. We also ran
our approximation algorithm on gsh-2015. On this graph,
with 2000 iterations, we obtain an approximate decomposi-
tion with a multiplicative error of 2.7 ·10−2 within four days
of computation.

Next, we evaluate how the different building blocks of our
algorithm contribute to the total running time. Our Frank-
Wolfe based algorithm is run for 500 iterations. Table 3
shows the running time of each of the steps in our algo-
rithm for computing the exact decomposition, namely: (i)
Frank-Wolfe based algorithm (FW for short) for which the
total running time for 500 iterations is reported, (ii) the al-
gorithm TryDecompose (TD) for tentative decomposition

in Section 3.2, (iii) the algorithm ExtractStableSubsets
(ESS) that extracts the stable sets from the aforementioned
tentative decomposition, (iv) the algorithm which computes
a maximum flow (MF) in each of the stable sets. The latter
step is only used for computing the exact decomposition.

The results are shown in Table 3. It shows that the most
computationally expensive steps of our main algorithm are
the Frank-Wolfe based algorithm and the maximum flow
algorithm, while the time required to compute a tentative
decomposition is negligible. Therefore, in view of the results
shown in Table 2, the running time of the main algorithm
could be decreased by a couple of hours if one is content
with a good approximation of the exact decomposition.

5.4 Degree of Parallelism
We study the degree of parallelism of our Frank-Wolfe

based algorithm. We measure the speedup4 as we increase
the number of threads. Figure 2 (left) shows the running
time (green curve) and the speedup (red curve) of the Frank-
Wolfe based algorithm. We observe that a significant speedup
is obtained (we obtain a speedup of 6 using 8 threads and
a speedup of 17 using 32 threads) even tough it is not opti-
mal. This speed up is not optimal as the step to compute
the r values by summing the α values requires sharing locks
among threads.

For our exact algorithm, we also use parallelization for
the maximum-flow subroutine over the obtained indepen-
dent blocks. However, the speedup is not so good as comput-
ing the maximum flow on the largest obtained independent
block consumes almost all resources.

5.5 Densest subgraph
Here we show our experiments on finding only the densest

subgraph and not the full decomposition. In this version of
the algorithm, the first two steps (FW and TD) are the
same, while the two last steps (ESS and MF) differ. Indeed,
we can stop ESS as soon as the smallest stable set has been
found, at this point we know that the densest subgraph is
included in it. Therefore, we just need to run the maximum
flow algorithm on this first found stable set.

We were able to find the exact densest subgraph following
this straightforward modification using only 100 iterations

4The speedup with respect to k threads is defined as the
running time using one thread divided by the running time
using k threads.

Networks approx. TG approx. exact TG15

LiveJournal 2m35s (6.5e-3) 35s 2m45s 12m02s
Wikipedia 2m11s (2.2e-3) 36s 2m14s 7m07s

Orkut 10m21s (1.8e-3) 7m02s 13m08s 1h02m23s
Twitter 3h09m21s (5.8e-3) 1h35m26s 4h57m28s -

Friendster 3h53m58s (1.3e-2) 1h43m54s 5h48m27s -

Table 2: Overall running time comparison of our approximation algorithm (and approximation achieved), the
approximation algorithm of TG, our exact algorithm and the exact algorithm of TG. We used 500 iterations
for the gradient descent.

5 10 15 20 25 30

Number of threads
0

5

10

15

20

Ti
m

e
(in

ho
ur

s)

Time
Speedup

0

2

4

6

8

10

12

14

16

18

S
pe

ed
up

100 101 102 103

Number of iterations

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

105

106

U
pp

er
bo

un
d

on
th

e
de

ns
es

te
rr

or

LiveJournal
Wikipedia
Orkut
Twitter
Friendster
gsh-2015

100 101 102 103

Number of iterations

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

A
ct

ua
ld

en
se

st
er

ro
r

LiveJournal
Wikipedia
Orkut
Twitter
Friendster
gsh-2015

Figure 2: (left) Time and speedup versus number of threads on Friendster for 500 iterations for the iterations
of the gradient descent. (middle) Upper bound and (right) actual multiplicative error on the densest subgraph
as a function of the number of iterations.

on all our datasets including the largest one gsh-2015. On
this largest network our algorithm took less than 10 hours
of computation.

Figure 2 (left) shows the upper bound on the multiplica-
tive error of the densest subgraph as a function of the num-
ber of iterations on all our graphs, while Figure 2 (right)
shows the exact multiplicative error. As we can see, a very
good approximation of the densest is obtained in a very small
number of iterations (say after 300 iterations we obtain a
0.001-approximation on all datasets). In addition, we can
see that on all datasets the approximation algorithm leads
to the exact densest subgraph within 2048 iterations. In
particular it took less than 16 iterations on LiveJournal and
less than 512 iterations on gsh-2015.

6. CONCLUSION AND FUTURE WORK
We devised an algorithm based on the Frank-Wolfe gra-

dient descent for computing the diminishingly-dense decom-
position of very large graphs along with a strong theoretical
analysis. Such a decomposition turns out to be equivalent
to the locally-dense decomposition proposed in [38]. We
showed that our algorithm is able to compute the exact de-
compositions for graphs of up 2 billion edges, as well as a
good approximation of the exact decomposition in graphs of
up to 25 billion edges. A densest subgraph can be computed
even faster in all our datasets.

Future work includes an extensive experimental evalua-
tion of our algorithms on hypergraphs for which all our
theoretical results still hold. It would also be interesting
to study from a theoretical point of view the asynchronous
version of the Frank-Wolfe algorithm, which turns out to be
more efficient in practice. Another interesting direction is
to adapt our algorithm into the architectures for processing

input data not fitting into main memory, such as Spark and
MapReduce.

7. REFERENCES
[1] J. Abello, M. G. Resende, and S. Sudarsky. Massive

quasi-clique detection. In Latin American Symposium
on Theoretical Informatics, pages 598–612. Springer,
2002.

[2] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and
A. Vespignani. Large scale networks fingerprinting and
visualization using the k-core decomposition. In
Advances in neural information processing systems,
pages 41–50, 2005.

[3] A. Angel, N. Koudas, N. Sarkas, D. Srivastava,
M. Svendsen, and S. Tirthapura. Dense subgraph
maintenance under streaming edge weight updates for
real-time story identification. VLDB J., 23(2):175–199,
2014.

[4] Y. Asahiro, R. Hassin, and K. Iwama. Complexity of
finding dense subgraphs. Discrete Applied
Mathematics, 121(1):15–26, 2002.

[5] G. D. Bader and C. W. Hogue. An automated method
for finding molecular complexes in large protein
interaction networks. BMC bioinformatics, 4(1):1,
2003.

[6] B. Bahmani, R. Kumar, and S. Vassilvitskii. Densest
subgraph in streaming and mapreduce. Proceedings of
the VLDB Endowment, 5(5):454–465, 2012.

[7] O. D. Balalau, F. Bonchi, T. Chan, F. Gullo, and
M. Sozio. Finding subgraphs with maximum total
density and limited overlap. In WSDM, pages
379–388, 2015.

[8] S. Bhattacharya, M. Henzinger, D. Nanongkai, and
C. E. Tsourakakis. Space- and time-efficient algorithm
for maintaining dense subgraphs on one-pass dynamic
streams. In STOC 2015, pages 173–182, 2015.

[9] P. Boldi, A. Marino, M. Santini, and S. Vigna.
BUbiNG: Massive crawling for the masses. In WWW
Companion, pages 227–228, 2014.

[10] F. Bonchi, F. Gullo, A. Kaltenbrunner, and
Y. Volkovich. Core decomposition of uncertain graphs.
In SIGKDD, pages 1316–1325, 2014.

[11] T. Calders, N. Dexters, J. J. Gillis, and B. Goethals.
Mining frequent itemsets in a stream. Information
Systems, 39:233–255, 2014.

[12] M. Charikar. Greedy approximation algorithms for
finding dense components in a graph. In
Approximation Algorithms for Combinatorial
Optimization, pages 84–95. Springer, 2000.

[13] J. Cohen. Trusses: Cohesive subgraphs for social
network analysis. National Security Agency Technical
Report, page 16, 2008.

[14] W. H. Cunningham. Decomposition of directed
graphs. SIAM Journal on Algebraic Discrete Methods,
3(2):214–228, 1982.

[15] L. Dagum and R. Enon. Openmp: an industry
standard api for shared-memory programming.
Computational Science & Engineering, IEEE,
5(1):46–55, 1998.

[16] X. Du, R. Jin, L. Ding, V. E. Lee, and J. H. T. Jr.
Migration motif: a spatial - temporal pattern mining
approach for financial markets. In SIGKDD, pages
1135–1144, 2009.

[17] G. Elidan, I. McGraw, and D. Koller. Residual belief
propagation: Informed scheduling for asynchronous
message passing. In UAI ’06, Proceedings of the 22nd
Conference in Uncertainty in Artificial Intelligence,
Cambridge, MA, USA, July 13-16, 2006, 2006.

[18] A. Epasto, S. Lattanzi, and M. Sozio. Efficient densest
subgraph computation in evolving graphs. In WWW,
pages 300–310, 2015.

[19] D. Eppstein and D. Strash. Listing all maximal cliques
in large sparse real-world graphs. In International
Symposium on Experimental Algorithms, pages
364–375. Springer, 2011.

[20] E. Fratkin, B. T. Naughton, D. L. Brutlag, and
S. Batzoglou. Motifcut: regulatory motifs finding with
maximum density subgraphs. In Proceedings 14th
International Conference on Intelligent Systems for
Molecular Biology 2006, Fortaleza, Brazil, August
6-10, 2006, pages 156–157, 2006.

[21] D. Gibson, R. Kumar, and A. Tomkins. Discovering
large dense subgraphs in massive graphs. In PVLDB,
pages 721–732, 2005.

[22] A. V. Goldberg. Finding a maximum density subgraph.

[23] P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli,
C. J. Honey, V. J. Wedeen, and O. Sporns. Mapping
the structural core of human cerebral cortex. PLoS
Biol, 6(7):e159, 2008.

[24] B. Hajek. Performance of global load balancing by
local adjustment. IEEE Transactions on Information
Theory, 36(6):1398–1414, 1990.

[25] B. Hajek et al. Balanced loads in infinite networks.
The Annals of Applied Probability, 6(1):48–75, 1996.

[26] M. Jaggi. Revisiting frank-wolfe: Projection-free
sparse convex optimization. In ICML, pages 427–435,
2013.

[27] M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros,
L. Muchnik, H. E. Stanley, and H. A. Makse.
Identification of influential spreaders in complex
networks. Nature physics, 6(11):888–893, 2010.

[28] H. Kwak, C. Lee, H. Park, and S. Moon. What is
Twitter, a social network or a news media? In WWW,
pages 591–600, 2010.

[29] V. E. Lee, N. Ruan, R. Jin, and C. Aggarwal. A
survey of algorithms for dense subgraph discovery. In
Managing and Mining Graph Data, pages 303–336.
Springer, 2010.

[30] J. Leskovec and A. Krevl. SNAP Datasets: Stanford
large network dataset collection.
http://snap.stanford.edu/data, June 2014.

[31] M. Letsios, O. D. Balalau, M. Danisch, E. Orsini, and
M. Sozio. Finding heaviest k-subgraphs and events in
social media. In The Sixth IEEE ICDM Workshop on
Data Mining in Networks (DaMNet), 2016.

[32] G. Palla, I. J. Farkas, P. Pollner, I. Derényi, and
T. Vicsek. Fundamental statistical features and
self-similar properties of tagged networks. New
Journal of Physics, 10(12):123026, 2008.

[33] R. A. Rossi, D. F. Gleich, and A. H. Gebremedhin.
Parallel maximum clique algorithms with applications
to network analysis. SIAM Journal on Scientific
Computing, 37(5):C589–C616, 2015.

[34] R. Samusevich, M. Danisch, and M. Sozio. Local
triangle-densest subgraphs. In ASONAM, pages 33–40,
2016.

[35] A. E. Sariyuce, C. Seshadhri, A. Pinar, and U. V.
Catalyurek. Finding the hierarchy of dense subgraphs
using nucleus decompositions. In WWW, pages
927–937, 2015.

[36] J. G. Siek, L.-Q. Lee, and A. Lumsdaine. Boost Graph
Library: User Guide and Reference Manual, The.
Pearson Education, 2001.

[37] M. Sozio and A. Gionis. The community-search
problem and how to plan a successful cocktail party.
In SIGKDD, pages 939–948, 2010.

[38] N. Tatti and A. Gionis. Density-friendly graph
decomposition. In WWW, pages 1089–1099, 2015.

[39] C. Tsourakakis, F. Bonchi, A. Gionis, F. Gullo, and
M. Tsiarli. Denser than the densest subgraph:
extracting optimal quasi-cliques with quality
guarantees. In SIGKDD, pages 104–112, 2013.

[40] B. W. Turnbull. The empirical distribution function
with arbitrarily grouped, censored and truncated data.
Journal of the Royal Statistical Society. Series B
(Methodological), pages 290–295, 1976.

[41] J. Wang and J. Cheng. Truss decomposition in
massive networks. Proceedings of the VLDB
Endowment, 5(9):812–823, 2012.

[42] N. Wang, J. Zhang, K.-L. Tan, and A. K. Tung. On
triangulation-based dense neighborhood graph
discovery. Proceedings of the VLDB Endowment,
4(2):58–68, 2010.

http://snap.stanford.edu/data

	Introduction
	Preliminaries
	Properties of Decompositions

	Algorithms
	Frank-Wolfe Based Algorithm
	Tentative Graph Decomposition
	Verification of the Graph Decomposition
	Estimating the Decomposition Error
	Approximate and Exact Decomposition

	Analysis
	Properties of an Optimal Solution of CP(G)
	Frank-Wolfe Algorithm
	Rate of Convergence
	Characterization of Locally-Dense Subsets

	Experiments
	Rate of Convergence
	Approximate Decomposition
	Comparison
	Degree of Parallelism
	Densest subgraph

	Conclusion and Future Work
	References

