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Abstract
Having a sequence of values v0, v∆, v2∆, . . . , vN∆, which are measured

every ∆ units of time, usually we are interested in the prediction of the
future outcome of this sequence at time (N + 1)∆. But in some real-
world cases we want to know, not the future, but rather the truth about
the present: if Maria performs more observations per unit of time than
Maximilian, how can he estimates the Maria’s results from his own?

In this small note we consider the situation when the underlying pro-
cess is Poissonian.

Introduction
Consider an object. The object may change at some moment. The object
never changes back. Changes occur due to some Poisson process parameterized
by λ. We cannot observe changes of the object directly, we have to do some
measurements.

Every ∆ units of time we observe the object. If we compare two successive
measurements there are only two possibilities: (no changes) • → •; (a change)
• → •′. In the case of • → •, we know for sure that the object has not been
modified between these two observations. But in the case of • → •′ we know
only that the object has been changed at least once, but we don’t know the
exact number of changes.

How can we infer the most likely λ having only a sequence of observations?

λ – parameter of Poisson process
〈X〉 – “realization” of Poisson process
〈Y 〉 – sequence of observations
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Estimator
We propose an estimator λ̂ and calculate the bias E

[
λ̂− λ

]
. Consider a se-

quence of observations 〈Y 〉: •0, •∆, •2∆, . . . , •N∆. There are N + 1 measure-
ments. Between any successive pair of observations there is an interval of ∆
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units of time. Therefore, we have a sequence of N intervals. Denote by W the
number of intervals without changes (• → •).

Realization 〈X〉: ◦′ ◦′′ ◦′′′ · · ·

Observed 〈Y 〉: •′ •′ •′′ · · ·change

nothing

change

Figure 1: Schematic representation of real and observed process.

Estimator

λ̂ = −∆−1 log
W

N

∆ – size of the time interval between observations
W – number of intervals without changes
N – total number of intervals

For any Poisson process we have the following expression for the probability
of exactly k changes in an interval of ∆ units of time:

Pr[k] =
e−λ∆(λ∆)k

k!
k = 0, 1, . . . ,

Due to memorylessness of Poisson process this probability does not depend of
what happens in other ∆ intervals. Next we write:

Pr[• → •] = Pr[0] = e−λ∆ (*)

We have W intervals without changes, therefore we can approximate:

Pr[• → •] ≈ W

N
(**)

Combining (*) and (**) we obtain the estimator:

e−λ∆ ≈ W

N

λ∆ ≈ − log
W

N

λ ≈ −∆−1 log
W

N
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Bias

E
[
λ̂− λ

]
≈ 1

2N∆

(
eλ∆ − 1

)

In order to calculate the bias of λ̂ we proceed as follows:

E
[
λ̂
]

= E
[
−∆−1 logW ′

]
= −∆−1E [logW ′] W ′ =

W

N

Using a second order Taylor expansion [1] we approximate:

E
[

logW ′
]
≈ logE[W ′]− Var[W ′]

2
(
E[W ′]

)2 (****)

It is easy to see that W is distributed binomially:

W ∼ B(N, e−λ∆) ,

where N is the number of trials, and e−λ∆ is the probability of success. Now,
we are able to calculate the expected value of W ′:

E[W ′] =
E[W ]

N
=
Ne−λ∆

N
= e−λ∆ ,

and the variance of W ′:

Var[W ′] =
Var[W ]

N2
=
Ne−λ∆(1− e−λ∆)

N2
=
e−λ∆(1− e−λ∆)

N

Now return to (****):

E
[

logW ′
]
≈ log

(
e−λ∆

)
− 1

N

e−λ∆(1− e−λ∆)

2e−2λ∆

≈ −λ∆− 1

2N

(
eλ∆ − 1

)
And finally:

E
[
λ̂
]
≈ λ+

1

2N∆

(
eλ∆ − 1

)
E
[
λ̂− λ

]
≈ 1

2N∆

(
eλ∆ − 1

)
We see that estimator λ̂ is asymptotically unbiased in the following sense:

lim
N→∞

E
[
λ̂
]

= λ
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Summary and discussions
Recall the question from the abstract: if Maria performs more observations per
unit of time than Maximilian, how can he estimates the Maria’s results from his
own?

When the underlying process is Poissonian, Maximilian can use λ̂ in order
to estimate the true value of λ. Using this λ he actually knows all necessary
information about the process. So, Maximilian can predict (in some sence)
Maria’s results.

Moreover, regardless of the delay between measurements, but with suffi-
cient number of observations, we can estimate λ very accurately (because of
limN→∞ E

[
λ̂
]

= λ).
The open question: what do we do when underlying prcoess is non-Poissonian?
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